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Abstract 

This paper presents a comprehensive comparative analysis of chess engines with particular focus on artificial intelligence 

technologies used in their implementation. Six engines were examined, representing various algorithmic approaches – 

from classical heuristic methods to advanced neural networks and reinforcement learning. Experiments were conducted 

for three different starting positions and with three time controls. The results clearly indicate the superiority of engines 

utilizing advanced machine learning techniques, which achieved the highest effectiveness in all tested conditions. The 

conducted research provides valuable information about the impact of applied AI technologies on the playing strength of 

chess engines in diverse conditions. 
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Streszczenie 

Niniejsza praca przedstawia kompleksową analizę porównawczą silników szachowych ze szczególnym uwzględnieniem 

zastosowanych w nich technologii sztucznej inteligencji. Badaniu poddano sześć silników reprezentujących różne 
podejścia algorytmiczne – od klasycznych metod heurystycznych po zaawansowane sieci neuronowe i uczenie ze wzmoc-

nieniem. Eksperymenty przeprowadzono dla trzech różnych pozycji startowych oraz przy trzech kontrolach czasu. 

Wyniki jednoznacznie wskazują na przewagę silników wykorzystujących zaawansowane techniki uczenia maszynowego, 

które osiągały najwyższą skuteczność we wszystkich testowanych warunkach. Przeprowadzone badania dostarczają in-

formacji na temat wpływu zastosowanych technologii AI na ogólną siłę gry silników szachowych w różnorodnych 
warunkach. 
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1. Wstęp 

Szachy są uznawane za jedną z najstarszych strategicz-
nych gier, których pozornie proste zasady prowadzą do 
niesamowitych możliwości taktycznych. Rozgrywka od-
bywa się na 64-polowej szachownicy, na której każdy z 
dwóch graczy posiada 16 bierek, w skład których wcho-

dzą pionki i figury przemieszczające się w określony spo-
sób. Celem gry jest zdobycie przewagi, aby finalnie po-
zbawić ruchu króla przeciwnika. Próby zrozumienia 
planu przeciwnika lub kreowanie własnego ataku czynią 
tę grę prawdziwym wyzwaniem intelektualnym o nie-

zwykłym stopniu złożoności. 
Z biegiem czasu opracowywano algorytmy, które 

miały zapewniać jak największą skuteczność i dokład-
ność gry. Wraz z rozwojem technologii powstawały sil-
niki szachowe, czyli programy symulujące ludzką grę. 
Początkowo nie były one w stanie rywalizować  
z najlepszymi szachistami. Jednak dzięki wykorzystaniu 
zaawansowanych algorytmów oraz technik uczenia ma-
szynowego, niektóre silniki osiągnęły poziom gry, który 
znacznie przewyższa możliwości nawet najwybitniej-
szych arcymistrzów (arcymistrz to najwyższy tytuł sza-
chowy). 

Integralnym elementem oceny siły zarówno ludzi, jak 
i silników szachowych jest system rankingowy Elo [1]. 
Ten matematyczny model pozwala na określenie po-
ziomu gracza na podstawie wyników rozegranych partii. 
Wprowadzenie tego systemu znacząco ułatwiło porów-
nywanie zawodników oraz silników, stanowiąc podstawę 
do obiektywnej oceny ich możliwości. 

Celem badań jest przeanalizowanie wybranych silni-
ków szachowych pod względem wykorzystanych technik 
sztucznej inteligencji oraz wyłonienie najlepszych z nich 
na podstawie liczby wygranych partii. Każdy z silników 
mierzy się z pozostałymi w różnych pozycjach starto-
wych, aby ocenić wszystkie aspekty działania poszcze-

gólnych rozwiązań. Silniki rozgrywają partie między 
sobą z różnym tempem gry (np. 1 minuta + 1 sekunda za 
wykonany ruch lub 3 minuty + 2 sekundy za ruch). Takie 

podejście pozwoli sprawdzić, czy dana technika uczenia 

działa lepiej w zależności od dostępnego czasu na wybór 
najlepszego posunięcia.  

W ramach przeprowadzanych badań postawiono nastę-
pujące hipotezy badawcze: 
• H1: Technika uczenia silnika szachowego wpływa na 

jego siłę gry i zrozumienie pozycji, 
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• H2: Tempo gry wpływa na dokładność gry silnika 
szachowego, 

• H3: Początkowe ułożenie figur na szachownicy 
wpływa na dokładność gry silnika szachowego. 

2. Przegląd literatury 

Postęp w dziedzinie sztucznej inteligencji oraz rozwój 
zaawansowanych algorytmów obliczeniowych zrewolu-
cjonizował sposób projektowania i optymalizacji silni-
ków szachowych. W przeglądzie literatury skupiono się 
na kluczowych badaniach analizujących różnorodne po-

dejścia do tworzenia i doskonalenia tych silników, ze 
szczególnym uwzględnieniem wykorzystania AI. Omó-
wione zostaną zarówno klasyczne algorytmy heury-
styczne, jak i nowoczesne metody oparte na głębokim 
uczeniu i uczeniu ze wzmocnieniem. 

Maciej Sójka w swoim artykule przeprowadza szcze-
gółowe porównanie wydajności wybranych silników sza-
chowych, koncentrując się na różnicach pod względem 
siły gry oraz zużycia zasobów sprzętowych [2]. Autor 
podkreśla znaczenie wyboru odpowiedniego silnika w 
zależności od konkretnych zastosowań, takich jak analiza 
gry czy gra symulacyjna. Porównuje silniki szachowe 
podczas klasycznych partii szachowych, ale także w wa-
riancie Chess960 [3] oraz z pozycji wygranej dla czar-

nych bierek. Dzięki temu testuje silniki w różnych, skom-
plikowanych sytuacjach. 

Jednym z kluczowych przełomów w dziedzinie silni-
ków szachowych jest algorytm AlphaZero przedsta-
wiony przez D. Silvera i współautorów [4]. Wykorzystu-
jąc technikę uczenia ze wzmocnieniem, algorytm opano-

wuje grę w szachy bez wcześniejszej wiedzy, demonstru-
jąc potencjał uniwersalnych algorytmów AI w rozwiązy-
waniu złożonych problemów decyzyjnych. Rozwinię-
ciem tej pracy są badania T. Zahavy’ego et al. [5], które 
wprowadzają element kreatywności do AlphaZero, roz-

szerzając możliwości AI poza tradycyjne strategie. We-

dług autorów, przyszłe badania mogą prowadzić do no-
wych odkryć w dziedzinie strategii szachowych, co zo-
stało już potwierdzone, gdy AlphaZero zdominowała 
inne silniki.  

Szczególne znaczenie mają badania nad metodami 
heurystycznymi i ich wydajnością. W. B. Putra  
i L. Heryawan wykazali, jak algorytm alfa-beta ogranicza 

przestrzeń przeszukiwań w analizie strategicznej [6]. Jest 

to najpowszechniej stosowany algorytm  

w logicznych grach planszowych. Polega na „odcinaniu” 
zbędnych gałęzi w drzewie przeszukiwań. 

Rozwój silników szachowych opartych na uczeniu 
maszynowym omówili M. Block et al. [7], wskazując na 
efektywność uczenia ze wzmocnieniem w dynamicznej 

poprawie strategii poprzez adaptację do zmieniających 
się warunków i strategii przeciwnika. Jednak według au-
torów proces treningu wymaga optymalizacji, aby skró-
cić czas potrzebny na osiągnięcie efektywności. Yu Nasu 
skoncentrował się na sieciach neuronowych  

w ocenie pozycji w komputerowym shogi (japońska od-
miana szachów), co pozwala na efektywniejsze dostoso-
wywanie modeli do nowych danych bez konieczności 
ponownego trenowania [8]. Autor dostrzega potencjał 

wykorzystania uczenia maszynowego w strategicznych 

grach planszowych. Podobny kierunek reprezentują ba-
dania Chi S.Y.G., które eksplorują zastosowanie głębo-
kich sieci rezydualnych w wariancie Crazyhouse Chess. 

Ten wariant jest bardziej skomplikowany od klasycznego 

i wymaga specyficznych metod analizy, w których Res-

Net wykazuje przewagę [9]. 

Q. A. Sadmine, A. Husna i M. Müller przeanalizowali 
efektywność silników Stockfish i Leela Chess Zero  
w porównaniu z tabelami końcówek [10]. Ich badania 

podkreślają różnice w podejściu obliczeniowym oraz za-
stosowania obu silników. Stockfish wykazał się wyższą 
dokładnością w klasycznych końcówkach, podczas gdy 
Leela Chess Zero okazała się bardziej elastyczna  
w adaptacji do różnych strategii końcówek. 

Rozwój silników szachowych opartych na sztucznej 
inteligencji stanowi niezwykle dynamicznie rozwijającą 
się dziedzinę nauki, w której różnorodne podejścia wza-
jemnie się uzupełniają. Badania ukazują nie tylko poten-
cjał AI w optymalizacji gry, ale także jej zastosowanie w 

szerszym kontekście analizy strategicznej. 

3. Metoda badań 

Badania zostały przeprowadzone na komputerze wypo-
sażonym w kartę graficzną NVIDIA GeForce GTX 1080, 

procesor Intel Core i7-8700, 16 GB pamięci RAM oraz 

system operacyjny Windows 10. Taka konfiguracja 

sprzętowa zapewniała odpowiednią wydajność do uru-
chamiania i analizowania partii rozgrywanych przez sil-

niki szachowe, bez ryzyka ograniczeń wydajnościowych 
wpływających na wyniki eksperymentu. 

Do przeprowadzenia badań nad silnikami szacho-
wymi wykorzystano program LucasChess [11], który jest 
zaawansowanym zestawem narzędzi dedykowanych 
grze, nauce i treningowi szachowemu. Program oferuje 

funkcje umożliwiające tworzenie turniejów pomiędzy 
różnymi silnikami szachowymi, co pozwala na ich po-
równanie w kontrolowanych warunkach. Badania obej-

mują testowanie silników w niestandardowych pozy-
cjach początkowych (ze straconym tempem przez białe 
oraz pozycja z losowo ustawionymi figurami na ostatniej 

linii), co pozwala sprawdzić zdolności adaptacyjne  
i kreatywność silników w sytuacjach wykraczających 
poza klasyczne partie szachowe. Taki podział ekspery-
mentów umożliwia dokładną ocenę mocnych  
i słabych stron różnych silników szachowych, uwzględ-
niając zarówno ich teoretyczne możliwości, jak i prak-
tyczną efektywność w nietypowych scenariuszach. 

 Turnieje zostały przeprowadzone w trzech kontro-

lach czasu: 1 minuta + 1 sekunda, 3 minuty + 2 sekundy 

oraz 5 minut + 2 sekundy (czas podstawowy przysługu-
jący zawodnikowi na rozegranie partii + czas bonusowy, 
dodawany po wykonaniu każdego posunięcia).  
W ten sposób powstało 9 konfiguracji (trzy tempa roz-

grywki dla trzech typów pozycji), gdzie dla każdej utwo-
rzono oddzielny turniej, w którym silniki szachowe roze-

grały po 10 partii (po dwie partie przeciwko każdemu ze 
wszystkich badanych silników, tak aby wyrównać liczbę 
partii rozgrywanych kolorem białym, jak i czarnym). 

Wybrane silniki szachowe są dostępne w programie 
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LucasChess, bez konieczności ich importowania do śro-
dowiska. 

W celu obiektywnego porównania skuteczności po-
szczególnych silników zastosowano klasyczny system 
ocen punktowych. Za wynik każdej partii przyznawano 
punkty według zasad: 
• 1 punkt za zwycięstwo, 
• 0,5 punktu za remis, 

• 0 punktów za porażkę. 
Na tej podstawie obliczano skuteczność silnika w danej 

konfiguracji turnieju jako procent maksymalnej możli-
wej liczby punktów, zgodnie z poniższym wzorem: 𝑆𝑘𝑢𝑡𝑒𝑐𝑧𝑛𝑜ść(%) = (𝑊 + 0,5 ∗ 𝑅𝑊 + 𝑅 + 𝑃 ) ∗ 100 (1) 

gdzie: 

• W - liczba wygranych partii, 

• R - liczba remisów, 
• P - liczba przegranych partii. 

3.1. Wybrane silniki szachowe 

W badaniach wykorzystano sześć różnorodnych silników 
szachowych, które reprezentują zarówno nowoczesne 
podejścia oparte na sztucznej inteligencji, jak i klasyczne 
algorytmy heurystyczne. Każdy z silników posiada uni-

kalne cechy, które wpływają na sposób oceny pozycji, 
podejmowania decyzji oraz ogólną siłę gry.  

Silniki wykorzystujące sztuczną inteligencję: 
• Stockfish 17 [12] – jeden z najsilniejszych dostęp-

nych silników, oparty na zaawansowanych metodach 

przeszukiwania drzewa gry. Od 2020 roku korzysta z 

efektywnie aktualizowanej sieci neuronowej 

(NNUE), co umocniło jego pozycję w ścisłej czo-

łówce pomiędzy silnikami szachowymi. Wersja 17 

została wydana w 2023r., 
• Lc0 v0.31.2 (Leela Chess Zero) [13] – silnik oparty 

na sieciach neuronowych oraz uczeniu ze wzmocnie-

niem, wykorzystujący uczenie maszynowe i metodę 
Monte Carlo Tree Search (MCTS). Jest to ogólnodo-
stępna wersja AlphaZero, która rezygnuje z klasycz-

nych heurystyk i uczy się grając samodzielnie, prze-

ciwko samemu sobie, 

• Komodo Dragon 1 [14] – silnik łączący klasyczne 
algorytmy z oceną pozycyjną, znany ze strategicznej 
i solidnej gry. Podobnie jak Stockfish, wykorzystuje 

efektywnie aktualizujące sieci neuronowe (NNUE). 

We wcześniejszej wersji bez „1” w nazwie, Komodo 
Dragon bazował jedynie na standardowych algoryt-

mach. 

Silniki klasyczne (bez wykorzystania AI): 

• Houdini 1.5a [15] – silnik o wysokiej sile gry, szcze-

gólnie skuteczny w dynamicznych i taktycznych po-
zycjach. Bazuje na klasycznych heurystykach oraz 

obszernej bazie debiutów z archiwalnych partii arcy-

mistrzów. W badaniu zastosowano wersję 1.5a, jedną 
z wcześniejszych, lecz wciąż sprawną,  

• Andscacs 0.9432n – hiszpański silnik charakteryzu-
jący się wydajnością i efektywną heurystyką oceny 
pozycji. Wyróżnia się skutecznością zarówno w grze 

pasywnej, jak i agresywnej, stosując zoptymalizo-

wany algorytm alfa-beta, 

• Gull 3 32bit – silnik znany z dynamicznej gry  

i dobrej optymalizacji. Często konkuruje z czoło-
wymi silnikami, cechuje się niskim zużyciem zaso-
bów systemowych. Podobnie jak Houdini oraz And-

scacs, bazuje na standardowych algorytmach, bez 

wykorzystania AI. 

3.2. Pozycje startowe w rozgrywkach 

Klasyczna pozycja startowa (Rysunek 1) – 

standardowa konfiguracja figur stosowana we 

wszystkich tradycyjnych turniejach. W tym ustawieniu 

białe mają niewielką przewagę, wynikającą z faktu 
rozpoczęcia partii. 

 

Rysunek 1: Standardowa pozycja szachowa. 

Pozycja ze straconym tempem przez białe (Rysunek 2) 

– ustawienie, w którym białe rozpoczynają grę od 
nieoptymalnego ruchu, co daje przewagę czarnym. 
Umożliwia to ocenę wpływu inicjatywy w pozycji oraz 
utraty wyboru pierwszego ruchu przez białe. 

 

Rysunek 2: Pozycja ze straconym tempem. 

Szachy Fischera (Rysunek 3) – wariant szachów, w 

którym pozycje figur na linii podstawowej są losowane, 
zgodnie z zasadami Chess960. Eliminuje to znaczenie 

przygotowania debiutowego, zwiększając rolę 
kreatywności i elastyczności. Wariant ten został 
opracowany przez byłego mistrza świata Bobby’ego 
Fischera. 

 

Rysunek 3: Pozycja chess960. 
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4. Wyniki 

Po przeprowadzonych turniejach w różnych konfigura-
cjach zebrano dane, na których podstawie przedstawiono 
wyniki. Rezultaty zaprezentowane w tabelach przedsta-

wiają procentowy rezultat (skuteczność), liczbę zwy-
cięstw, remisów oraz porażek. Każda z tabel opisuje wy-
niki z jednej z dziewięciu konfiguracji, w której był prze-
prowadzany turniej. 

W pozycji klasycznej przy tempie 1min+1s najwyż-
szy wynik uzyskały silniki Stockfish i Komodo Dragon 

(używające NNUE), które nie przegrały żadnej partii. 
Lc0, wykorzystujący uczenie ze wzmocnieniem zakoń-
czył test z wynikiem skuteczności na poziomie 50%, na-

tomiast klasyczne silniki (Gull,  Houdini, Andscacs) wy-

padły najsłabiej. Gull uzyskał więcej zwycięstw niż Lc0, 
ale brak remisów obniżył jego ogólny wynik. Wyniki są 
widoczne w Tabeli 1. 

Tabela 1: Pozycja klasyczna, 1min+1s [S – skuteczność, Z – liczba 

zwycięstw, R – liczba remisów, P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 80 6 4 0 

Komodo Dragon 80 6 4 0 

Lc0 50 3 4 3 

Gull 40 4 0 6 

Andscacs 25 1 3 6 

Houdini 25 2 1 7 

Dla pozycji klasycznej z czasem 3min+2s Stockfish i 

Komodo Dragon ponownie osiągnęły najwyższe wyniki, 
podkreślając przewagę sieci neuronowych. Lc0 przegrał 
aż 5 partii, zrównując wynik z Andscacs, który w swojej 
implementacji wykorzystuje jedynie standardowe algo-

rytmy. Najsłabiej wypadły Houdini i Gull, przegrywając 
6 z 10 partii, co przedstawia Tabela 2. 

Tabela 2: Pozycja klasyczna, 3min+2s [S – skuteczność, Z – liczba 

zwycięstw, R – liczba remisów, P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 85 7 3 0 

Komodo Dragon 75 6 3 1 

Lc0 40 3 2 5 

Andscacs 40 3 2 5 

Gull 35 3 1 6 

Houdini 25 1 3 6 

W przypadku konfiguracji 5min+2s, Stockfish uzy-

skał najwyższy wynik, przewyższając Komodo. Lc0 zna-

cząco zwiększył poziom skuteczności, co sugeruje na 

znaczący wpływ dłuższego czasu na namysł dla techniki 
uczenia ze wzmocnieniem. Natomiast Gull i Houdini po-

nownie zajęły ostatnie miejsca, co jest widoczne w Ta-

beli 3. 

Tabela 3: Pozycja klasyczna, 5min+2s [S – skuteczność, Z – liczba 

zwycięstw, R – liczba remisów, P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 85 7 3 0 

Komodo Dragon 75 5 5 0 

Lc0 70 6 2 2 

Andscacs 30 1 4 5 

Gull 25 3 3 6 

Houdini 15 0 3 7 

Tabela 4 ukazuje dominację silników Stockfish  
i Komodo Dragon w pozycji ze straconym tempem dla 

białych. Lc0 utrzymał stabilny, umiarkowany poziom. W 

odróżnieniu od silników wykorzystujących AI, standar-
dowe silniki były w stanie wygrać jedynie jedną  
z dziesięciu partii. Mógł na to wpłynąć znacząco ograni-
czony czas na wybór posunięcia w bardzo nietypowej po-
zycji. 

 

Tabela 4: Pozycja ze straconym tempem białych, 1min+1s  

[S – skuteczność, Z – liczba zwycięstw, R – liczba remisów,  
P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 90 8 2 0 

Komodo Dragon 80 7 2 1 

Lc0 65 5 3 2 

Houdini 30 1 4 5 

Gull 20 1 2 7 

Andscacs 15 1 1 8 

Według wyników z Tabeli 5, w tempie 3min+2s, gor-

sza pozycja nie przeszkodziła silnikowi Stockfish  

w dominacji. Lc0 wykazał się dużą liczbą remisów, co 
dało mu trzecie miejsce. Tym razem Andscacs uzyskał 
najgorszy wynik skuteczności, na poziomie 20%. Stan-

dardowe silniki odnotowały nieznaczną poprawę sku-
teczności względem szybszego tempa gry. 

 

Tabela 5: Pozycja ze straconym tempem białych, 3min+2s  

[S – skuteczność, Z – liczba zwycięstw, R – liczba remisów,  
P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 90 8 2 0 

Komodo Dragon 75 6 3 1 

Lc0 55 3 5 2 

Gull 35 2 3 5 

Houdini 25 2 1 7 

Andscacs 20 1 2 7 

Przy 5min+2s Stockfish i Komodo utrzymały wysoką 
skuteczność. Lc0 wygrał tylko 3 partie, pomimo dłuż-
szego czasu na wybór najlepszego posunięcia. Wskazuje 
to na przewagę sieci neuronowych nad uczeniem ze 
wzmocnieniem w niestandardowych pozycjach. Houdini 

i Gull ponownie wypadły słabo, osiągając odpowiednio 
1 i 0 zwycięstw. Wyniki te przedstawia Tabela 6. 

 

Tabela 6: Pozycja ze straconym tempem białych, 5min+2s  

[S – skuteczność, Z – liczba zwycięstw, R – liczba remisów,  
P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 90 8 2 0 

Komodo Dragon 80 7 2 1 

Lc0 45 3 3 4 

Andscacs 35 2 3 5 

Houdini 25 1 3 6 

Gull 25 0 5 5 

W partiach typu Chess960, w tempie 1min+1s, Stock-

fish i Komodo ponownie zdominowały rywalizację, co 
wyraźnie widoczne jest w Tabeli 7. Zastosowanie NNUE 

w implementacjach tych silników okazało się nieza-
wodne w każdym typie pozycji. Pozostałe silniki uzy-
skały znacznie niższe wyniki. Lc0 uzyskało najniższą 
skuteczność w porównaniu z innymi konfiguracjami tur-
niejów, zrównując poziom do silników wykorzystują-
cych standardowe algorytmy (Andscacs, Gull, Houdini). 
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Powodem tak niezadowalających rezultatów może być 
połączenie skomplikowanej pozycji z szybkim tempem 
gry.  

Tabela 7: Pozycja Chess960, 1min+1s [S – skuteczność, Z – liczba 

zwycięstw, R – liczba remisów, P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 90 8 2 0 

Komodo Dragon 85 7 3 0 

Andscacs 35 1 5 4 

Lc0 30 1 4 5 

Houdini 30 2 2 6 

Gull 30 2 2 6 

Dla pozycji „Szachów Fischera” z tempem 3min+2s 

dominacja Stockfisha utrzymała się, ponownie nie prze-
grał on żadnej partii. Lc0 był trzeci, głównie dzięki remi-
som. Dodatkowy czas pozwolił mu poprawić wynik 
względem szybszego tempa gry w tej pozycji. W dolnej 

części Tabeli 8 znajdują się Houdini i Andscacs.  

Tabela 8: Pozycja Chess960, 3min+2s [S – skuteczność, Z – liczba 

zwycięstw, R – liczba remisów, P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 90 8 2 0 

Komodo Dragon 75 6 3 1 

Lc0 55 3 5 2 

Gull 35 2 3 5 

Andscacs 25 1 3 6 

Houdini 20 1 2 7 

W ostatnim teście (Chess960, 5min+2s), Stockfish 

ponownie zakończył turniej bez porażki. Komodo Dra-
gon i Lc0 utrzymały wysoką formę, oddzielając silniki 
wykorzystujące AI z klasycznymi implementacjami. 

Houdini zakończył rundę z ośmioma porażkami i wyni-
kiem na poziomie 15%. Wyniki przedstawia Tabela 9. 

Tabela 9: Pozycja Chess960, 5min+2s [S – skuteczność, Z – liczba 

zwycięstw, R – liczba remisów, P – liczba porażek] 

Silnik S (%) Z R P 

Stockfish 90 8 2 0 

Komodo Dragon 70 5 4 1 

Lc0 55 4 3 3 

Andscacs 35 3 1 6 

Gull 35 2 3 5 

Houdini 15 1 1 8 

Na podstawie wszystkich przeprowadzonych testów 
można zauważyć wyraźną dominację silnika Stockfish, 

który nie przegrał żadnej partii niezależnie od ustawienia 
początkowego ani tempa gry. W każdej konfiguracji 
utrzymywał najwyższą skuteczność, co potwierdza jego 
pozycję lidera wśród współczesnych silników szacho-
wych. Komodo Dragon również wykazywał bardzo wy-
soką stabilność i siłę gry, ustępując jedynie minimalnie 
Stockfishowi. Oba silniki wykorzystujące efektywnie ak-
tualizujące sieci neuronowe wyróżniły się wysoką sku-
tecznością na tle pozostałych. Lc0 prezentowało umiar-

kowane wyniki, jego technika uczenia ze wzmocnieniem 

była wyraźnie skuteczniejsza od klasycznych algoryt-

mów zawężania gałęzi przeszukiwań najlepszych posu-
nięć, lecz również słabsza w stosunku do NNUE. Najgo-

rzej wypadły Houdini, Gull i Andscacs, które miały pro-
blemy ze skutecznością w bardziej złożonych lub 

dynamicznych warunkach. Oznacza to, że klasyczne me-
tody nie są w stanie konkurować z nowoczesnymi tech-
nikami wykorzystującymi sztuczną inteligencję. 

5. Dyskusja 

Przeprowadzone badania porównawcze dla sześciu wy-
branych silników szachowych (Stockfish, Komodo Dra-
gon, Lc0, Gull, Andscacs i Houdini) w trzech różnych 
typach pozycji oraz przy trzech różnych kontrolach czasu 
dostarczyły kompleksowego obrazu ich wydajności. 
Analiza zgromadzonych danych pozwala na obserwację 
istotnych zależności dotyczących skuteczności poszcze-
gólnych silników w zależności od warunków gry oraz za-
stosowanych technik sztucznej inteligencji. 

Wyniki silników w pozycjach klasycznych dla trzech 
temp gry przedstawiono na Rysunku 4. Widoczna jest 

wyraźna dominacja silników wykorzystujących AI. 
Stockfish i Komodo Dragon, których implementacje 
opierają się na efektywnie aktualizujących sieciach neu-
ronowych utrzymują wysoki i stabilny poziom skutecz-

ności niezależnie od czasu gry. Lc0, bazujące na uczeniu 
ze wzmocnieniem wykazuje zróżnicowaną skuteczność – 

od około 40% przy tempie 3min+2s do niemal 70% przy 

5min+2s, co sugeruje, że dłuższy czas na analizę pozycji 
znacząco poprawia jego wyniki. Silniki bazujące na kla-
sycznych heurystykach (Gull, Andscacs, Houdini) osią-
gają najniższe rezultaty, które dodatkowo maleją przy 
wydłużeniu czasu gry – z poziomu około 30% do nieco 

ponad 20%.  

 

Rysunek 4: Skuteczność technik uczenia w pozycji klasycznej. 

Analizując wyniki dla pozycji ze straconym tempem 
dla białych (Rysunek 5), ponownie widoczna jest domi-

nacja silników Stockfish i Komodo Dragon, utrzymują-
cych około 85% skuteczności. Interesującą obserwacją 
jest spadek wyników Lc0 wraz z wydłużeniem czasu gry 
– od około 65% przy 1min+1s do 45% przy 5min+2s. 

Klasyczne silniki wykazują odwrotną tendencję – im 

więcej czasu na analizę, tym lepsze ich wyniki, co po-
twierdza skuteczność algorytmów alfa-beta przy wydłu-
żonym czasie gry. Jednak wyniki te nadal nie są nawet 

zbliżone do skuteczności silników wykorzystujących 
NNUE (Stockfish, Komodo Dragon) lub uczenie ze 

wzmocnieniem (Lc0). 
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Rysunek 5: Skuteczność technik uczenia w pozycji ze 

 straconym tempem białych. 

Na Rysunku 6 przedstawiono skuteczność w loso-
wych pozycjach Chess960. Stockfish i Komodo Dragon 

ponownie osiągają najwyższe wyniki, choć zauważalna 
jest lekka tendencja spadkowa przy dłuższych tempach. 
Z kolei Lc0, wykorzystujący uczenie ze wzmocnieniem, 
osiąga znaczący wzrost skuteczności – z 30% przy 

1min+1s do ponad 55% przy 3min+2s i 5min+2s. Suge-

ruje to, że silnik ten wymaga więcej czasu na analizę nie-
typowych pozycji. Klasyczne silniki, jak Gull, Houdini i 

Andscacs, osiągają najsłabsze wyniki i nie wykazują po-

prawy wyników w przypadku wydłużonego czasu gry. 
Widoczna jest znacząca przewaga silników wykorzystu-
jących techniki sztucznej inteligencji. 

 

Rysunek 6: Skuteczność technik uczenia w pozycji chess960. 

Pierwsza mapa cieplna (Rysunek 7) przedstawia sku-

teczność silników w zależności od tempa gry, niezależnie 
od pozycji startowej. Ukazuje ona bezsprzeczną prze-
wagę implementacji wykorzystujących AI. Stockfish ce-

chuje się niezwykłą stabilnością, osiągając 80–90% sku-

teczności we wszystkich tempach gry. Komodo Dragon 
osiąga nieznacznie niższe wartości. Lc0 charakteryzuje 

się dużą stabilnością skuteczności, lecz na znacznie niż-
szym poziomie skuteczności niż silniki korzystające z 
sieci neuronowych (Stockfish, Komodo Dragon). Kla-

syczne silniki (Gull, Andscacs, Houdini) pozostają 
znacznie poniżej 40% skuteczności, niezależnie od do-
stępnego czasu. Najsłabiej wypada Houdini, który po-
siada skuteczność na poziomie 20% w każdym 

możliwym tempie rozgrywki. Oznacza to, że dodatkowy 
czas na znalezienie ruchu nie ma większego znaczenia 
dla klasycznych silników szachowych. 

 

Rysunek 7: Mapa cieplna skuteczności silników w zależności od 
tempa gry. 

Druga mapa cieplna (Rysunek 8) koncentruje się na 
wpływie pozycji startowej na skuteczność silników, nie-
zależnie od tempa gry. Stockfish i Komodo Dragon po-
zostają liderami we wszystkich układach początkowych. 
Lc0 uzyskuje najlepsze wyniki w pozycjach klasycz-

nych, a jego skuteczność wyraźnie spada w niestandar-
dowych pozycjach, co może wskazywać na ograniczenia 
podejścia opartego na uczeniu ze wzmocnieniem w wa-

runkach odbiegających od wzorcowych. Klasyczne sil-
niki nie wykazują znaczących różnic między typami po-
zycji, lecz ich ogólna skuteczność jest niska. 

 

Rysunek 8: Mapa cieplna skuteczności silników w zależności od po-
zycji początkowej. 

Podsumowując, przeprowadzone badania wyraźnie 
wskazują na dominację silników wykorzystujących zaa-
wansowane techniki sztucznej inteligencji – zarówno 
sieci neuronowe (Stockfish, Komodo Dragon), jak  

i uczenie ze wzmocnieniem (Lc0). Silniki te konsekwent-

nie osiągają najwyższe wyniki we wszystkich warunkach 

testowych. Natomiast standardowe implementacje osią-
gały najsłabsze wyniki. Zauważalne są również zróżni-
cowane reakcje silników na długość kontroli czasu - nie-

które silniki zyskują przewagę przy dłuższej analizie 

(zwłaszcza Lc0), podczas gdy inne nie odnotowują zna-
czącej poprawy. Wskazuje to na złożone zależności po-
między architekturą silnika szachowego, typem zastoso-

wanego algorytmu oraz warunkami gry, co jest istotnym 

obszarem do dalszych badań i optymalizacji. Kolor bie-

rek nie miał dużego wpływu na skuteczność silników 
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szachowych, jednak można było odnotować większą 
liczbę remisów i przegranych partii po stronie koloru 

czarnego. 

6. Wnioski 

Przeprowadzone badania pozwoliły na sformułowanie 
wniosków oraz potwierdziły wszystkie trzy postawione 
hipotezy. Wykazano, że technika uczenia silnika szacho-
wego (H1), tempo gry (H2) oraz początkowe ustawienie 
figur (H3) mają istotny wpływ na jego skuteczność. 

Silniki wykorzystujące zaawansowane techniki 
sztucznej inteligencji – sieci neuronowe (Stockfish, Ko-

modo Dragon) oraz uczenie ze wzmocnieniem (Lc0) – 

konsekwentnie osiągały lepsze wyniki niż silniki bazu-
jące na klasycznych algorytmach heurystycznych (Hou-
dini, Gull, Andscacs). Szczególnie wyraźna przewaga AI 
widoczna była w niestandardowych warunkach gry, ta-

kich jak losowe pozycje Chess960 czy pozycje ze straco-

nym tempem. Stockfish wykazał największą stabilność i 
dominację – nie przegrał żadnej partii niezależnie od po-
zycji ani tempa gry. Komodo Dragon utrzymywał rów-
nież bardzo wysoką skuteczność. Lc0 prezentował więk-
szą zmienność wyników – zyskiwał na dłuższym czasie 
gry w pozycjach klasycznych, ale tracił przewagę w ukła-
dach niestandardowych, co wskazuje na złożoną interak-
cję między algorytmem a strukturą pozycji.  

Przeprowadzone badania, mimo kompleksowego po-

dejścia, posiadają pewne ograniczenia, które warto 
uwzględnić i wskazać kierunki przyszłych badań, które 
powinny objąć: 

• analizę wpływu konfiguracji sprzętowej (CPU vs 
GPU) na wydajność silników AI, 

• rozszerzenie testów o większą liczbę partii dla zwięk-
szenia istotności statystycznej, 

• głębszą analizę specyficznych typów pozycji (np. 
końcówki, pozycje taktyczne), 

• wykorzystanie nowszych wersji istniejących silników 
oraz innych obiecujących implementacji. 
Sztuczna inteligencja w szachach nie tylko przewyż-

szyła klasyczne metody, ale również ujawniła potencjał 
dalszego rozwoju poprzez adaptację do skomplikowa-

nych zadań i pozycji. Najsilniejsze silniki nie tylko wy-

grywają, ale wykazują odporność na zmienne warunki 
gry. Przyszłość rywalizacji silników szachowych będzie 
zależeć od tego, jak skutecznie uda się połączyć moc ob-
liczeniową z elastycznymi, uczącymi się modelami.  
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