
JCSI 37 (2025) 436–442

Received: 25 June 2025

Accepted: 19 August 2025

436

The impact of AI use on the performance of chess engines

Wpływ zastosowania sztucznej inteligencji na skuteczność silników
szachowych

Jakub Król*, Jakub Smołka

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

This paper presents a comprehensive comparative analysis of chess engines with particular focus on artificial intelligence

technologies used in their implementation. Six engines were examined, representing various algorithmic approaches –

from classical heuristic methods to advanced neural networks and reinforcement learning. Experiments were conducted

for three different starting positions and with three time controls. The results clearly indicate the superiority of engines

utilizing advanced machine learning techniques, which achieved the highest effectiveness in all tested conditions. The

conducted research provides valuable information about the impact of applied AI technologies on the playing strength of

chess engines in diverse conditions.

Keywords: chess engines; comparative analysis; neural networks; reinforcement learning

Streszczenie

Niniejsza praca przedstawia kompleksową analizę porównawczą silników szachowych ze szczególnym uwzględnieniem

zastosowanych w nich technologii sztucznej inteligencji. Badaniu poddano sześć silników reprezentujących różne
podejścia algorytmiczne – od klasycznych metod heurystycznych po zaawansowane sieci neuronowe i uczenie ze wzmoc-

nieniem. Eksperymenty przeprowadzono dla trzech różnych pozycji startowych oraz przy trzech kontrolach czasu.

Wyniki jednoznacznie wskazują na przewagę silników wykorzystujących zaawansowane techniki uczenia maszynowego,

które osiągały najwyższą skuteczność we wszystkich testowanych warunkach. Przeprowadzone badania dostarczają in-

formacji na temat wpływu zastosowanych technologii AI na ogólną siłę gry silników szachowych w różnorodnych
warunkach.

Słowa kluczowe: silniki szachowe; analiza porównawcza; sieci neuronowe; uczenie ze wzmocnieniem

*Corresponding author

Email address: s95456@pollub.edu.pl (J. Król)

Published under Creative Common License (CC BY 4.0 Int.)

1. Wstęp

Szachy są uznawane za jedną z najstarszych strategicz-
nych gier, których pozornie proste zasady prowadzą do
niesamowitych możliwości taktycznych. Rozgrywka od-
bywa się na 64-polowej szachownicy, na której każdy z
dwóch graczy posiada 16 bierek, w skład których wcho-

dzą pionki i figury przemieszczające się w określony spo-
sób. Celem gry jest zdobycie przewagi, aby finalnie po-
zbawić ruchu króla przeciwnika. Próby zrozumienia
planu przeciwnika lub kreowanie własnego ataku czynią
tę grę prawdziwym wyzwaniem intelektualnym o nie-

zwykłym stopniu złożoności.
Z biegiem czasu opracowywano algorytmy, które

miały zapewniać jak największą skuteczność i dokład-
ność gry. Wraz z rozwojem technologii powstawały sil-
niki szachowe, czyli programy symulujące ludzką grę.
Początkowo nie były one w stanie rywalizować
z najlepszymi szachistami. Jednak dzięki wykorzystaniu
zaawansowanych algorytmów oraz technik uczenia ma-
szynowego, niektóre silniki osiągnęły poziom gry, który
znacznie przewyższa możliwości nawet najwybitniej-
szych arcymistrzów (arcymistrz to najwyższy tytuł sza-
chowy).

Integralnym elementem oceny siły zarówno ludzi, jak
i silników szachowych jest system rankingowy Elo [1].
Ten matematyczny model pozwala na określenie po-
ziomu gracza na podstawie wyników rozegranych partii.
Wprowadzenie tego systemu znacząco ułatwiło porów-
nywanie zawodników oraz silników, stanowiąc podstawę
do obiektywnej oceny ich możliwości.

Celem badań jest przeanalizowanie wybranych silni-
ków szachowych pod względem wykorzystanych technik
sztucznej inteligencji oraz wyłonienie najlepszych z nich
na podstawie liczby wygranych partii. Każdy z silników
mierzy się z pozostałymi w różnych pozycjach starto-
wych, aby ocenić wszystkie aspekty działania poszcze-

gólnych rozwiązań. Silniki rozgrywają partie między
sobą z różnym tempem gry (np. 1 minuta + 1 sekunda za
wykonany ruch lub 3 minuty + 2 sekundy za ruch). Takie

podejście pozwoli sprawdzić, czy dana technika uczenia

działa lepiej w zależności od dostępnego czasu na wybór
najlepszego posunięcia.

W ramach przeprowadzanych badań postawiono nastę-
pujące hipotezy badawcze:
• H1: Technika uczenia silnika szachowego wpływa na

jego siłę gry i zrozumienie pozycji,

mailto:kowalski@company.com

Journal of Computer Sciences Institute 37 (2025) 436-442

437

• H2: Tempo gry wpływa na dokładność gry silnika
szachowego,

• H3: Początkowe ułożenie figur na szachownicy
wpływa na dokładność gry silnika szachowego.

2. Przegląd literatury

Postęp w dziedzinie sztucznej inteligencji oraz rozwój
zaawansowanych algorytmów obliczeniowych zrewolu-
cjonizował sposób projektowania i optymalizacji silni-
ków szachowych. W przeglądzie literatury skupiono się
na kluczowych badaniach analizujących różnorodne po-

dejścia do tworzenia i doskonalenia tych silników, ze
szczególnym uwzględnieniem wykorzystania AI. Omó-
wione zostaną zarówno klasyczne algorytmy heury-
styczne, jak i nowoczesne metody oparte na głębokim
uczeniu i uczeniu ze wzmocnieniem.

Maciej Sójka w swoim artykule przeprowadza szcze-
gółowe porównanie wydajności wybranych silników sza-
chowych, koncentrując się na różnicach pod względem
siły gry oraz zużycia zasobów sprzętowych [2]. Autor
podkreśla znaczenie wyboru odpowiedniego silnika w
zależności od konkretnych zastosowań, takich jak analiza
gry czy gra symulacyjna. Porównuje silniki szachowe
podczas klasycznych partii szachowych, ale także w wa-
riancie Chess960 [3] oraz z pozycji wygranej dla czar-

nych bierek. Dzięki temu testuje silniki w różnych, skom-
plikowanych sytuacjach.

Jednym z kluczowych przełomów w dziedzinie silni-
ków szachowych jest algorytm AlphaZero przedsta-
wiony przez D. Silvera i współautorów [4]. Wykorzystu-
jąc technikę uczenia ze wzmocnieniem, algorytm opano-

wuje grę w szachy bez wcześniejszej wiedzy, demonstru-
jąc potencjał uniwersalnych algorytmów AI w rozwiązy-
waniu złożonych problemów decyzyjnych. Rozwinię-
ciem tej pracy są badania T. Zahavy’ego et al. [5], które
wprowadzają element kreatywności do AlphaZero, roz-

szerzając możliwości AI poza tradycyjne strategie. We-

dług autorów, przyszłe badania mogą prowadzić do no-
wych odkryć w dziedzinie strategii szachowych, co zo-
stało już potwierdzone, gdy AlphaZero zdominowała
inne silniki.

Szczególne znaczenie mają badania nad metodami
heurystycznymi i ich wydajnością. W. B. Putra
i L. Heryawan wykazali, jak algorytm alfa-beta ogranicza

przestrzeń przeszukiwań w analizie strategicznej [6]. Jest

to najpowszechniej stosowany algorytm

w logicznych grach planszowych. Polega na „odcinaniu”
zbędnych gałęzi w drzewie przeszukiwań.

Rozwój silników szachowych opartych na uczeniu
maszynowym omówili M. Block et al. [7], wskazując na
efektywność uczenia ze wzmocnieniem w dynamicznej

poprawie strategii poprzez adaptację do zmieniających
się warunków i strategii przeciwnika. Jednak według au-
torów proces treningu wymaga optymalizacji, aby skró-
cić czas potrzebny na osiągnięcie efektywności. Yu Nasu
skoncentrował się na sieciach neuronowych

w ocenie pozycji w komputerowym shogi (japońska od-
miana szachów), co pozwala na efektywniejsze dostoso-
wywanie modeli do nowych danych bez konieczności
ponownego trenowania [8]. Autor dostrzega potencjał

wykorzystania uczenia maszynowego w strategicznych

grach planszowych. Podobny kierunek reprezentują ba-
dania Chi S.Y.G., które eksplorują zastosowanie głębo-
kich sieci rezydualnych w wariancie Crazyhouse Chess.

Ten wariant jest bardziej skomplikowany od klasycznego

i wymaga specyficznych metod analizy, w których Res-

Net wykazuje przewagę [9].

Q. A. Sadmine, A. Husna i M. Müller przeanalizowali
efektywność silników Stockfish i Leela Chess Zero
w porównaniu z tabelami końcówek [10]. Ich badania

podkreślają różnice w podejściu obliczeniowym oraz za-
stosowania obu silników. Stockfish wykazał się wyższą
dokładnością w klasycznych końcówkach, podczas gdy
Leela Chess Zero okazała się bardziej elastyczna
w adaptacji do różnych strategii końcówek.

Rozwój silników szachowych opartych na sztucznej
inteligencji stanowi niezwykle dynamicznie rozwijającą
się dziedzinę nauki, w której różnorodne podejścia wza-
jemnie się uzupełniają. Badania ukazują nie tylko poten-
cjał AI w optymalizacji gry, ale także jej zastosowanie w

szerszym kontekście analizy strategicznej.

3. Metoda badań

Badania zostały przeprowadzone na komputerze wypo-
sażonym w kartę graficzną NVIDIA GeForce GTX 1080,

procesor Intel Core i7-8700, 16 GB pamięci RAM oraz

system operacyjny Windows 10. Taka konfiguracja

sprzętowa zapewniała odpowiednią wydajność do uru-
chamiania i analizowania partii rozgrywanych przez sil-

niki szachowe, bez ryzyka ograniczeń wydajnościowych
wpływających na wyniki eksperymentu.

Do przeprowadzenia badań nad silnikami szacho-
wymi wykorzystano program LucasChess [11], który jest
zaawansowanym zestawem narzędzi dedykowanych
grze, nauce i treningowi szachowemu. Program oferuje

funkcje umożliwiające tworzenie turniejów pomiędzy
różnymi silnikami szachowymi, co pozwala na ich po-
równanie w kontrolowanych warunkach. Badania obej-

mują testowanie silników w niestandardowych pozy-
cjach początkowych (ze straconym tempem przez białe
oraz pozycja z losowo ustawionymi figurami na ostatniej

linii), co pozwala sprawdzić zdolności adaptacyjne
i kreatywność silników w sytuacjach wykraczających
poza klasyczne partie szachowe. Taki podział ekspery-
mentów umożliwia dokładną ocenę mocnych
i słabych stron różnych silników szachowych, uwzględ-
niając zarówno ich teoretyczne możliwości, jak i prak-
tyczną efektywność w nietypowych scenariuszach.

 Turnieje zostały przeprowadzone w trzech kontro-

lach czasu: 1 minuta + 1 sekunda, 3 minuty + 2 sekundy

oraz 5 minut + 2 sekundy (czas podstawowy przysługu-
jący zawodnikowi na rozegranie partii + czas bonusowy,
dodawany po wykonaniu każdego posunięcia).
W ten sposób powstało 9 konfiguracji (trzy tempa roz-

grywki dla trzech typów pozycji), gdzie dla każdej utwo-
rzono oddzielny turniej, w którym silniki szachowe roze-

grały po 10 partii (po dwie partie przeciwko każdemu ze
wszystkich badanych silników, tak aby wyrównać liczbę
partii rozgrywanych kolorem białym, jak i czarnym).

Wybrane silniki szachowe są dostępne w programie

Journal of Computer Sciences Institute 37 (2025) 436-442

438

LucasChess, bez konieczności ich importowania do śro-
dowiska.

W celu obiektywnego porównania skuteczności po-
szczególnych silników zastosowano klasyczny system
ocen punktowych. Za wynik każdej partii przyznawano
punkty według zasad:
• 1 punkt za zwycięstwo,
• 0,5 punktu za remis,

• 0 punktów za porażkę.
Na tej podstawie obliczano skuteczność silnika w danej

konfiguracji turnieju jako procent maksymalnej możli-
wej liczby punktów, zgodnie z poniższym wzorem: 𝑆𝑘𝑢𝑡𝑒𝑐𝑧𝑛𝑜ść(%) = (𝑊 + 0,5 ∗ 𝑅𝑊 + 𝑅 + 𝑃) ∗ 100 (1)

gdzie:

• W - liczba wygranych partii,

• R - liczba remisów,
• P - liczba przegranych partii.

3.1. Wybrane silniki szachowe

W badaniach wykorzystano sześć różnorodnych silników
szachowych, które reprezentują zarówno nowoczesne
podejścia oparte na sztucznej inteligencji, jak i klasyczne
algorytmy heurystyczne. Każdy z silników posiada uni-

kalne cechy, które wpływają na sposób oceny pozycji,
podejmowania decyzji oraz ogólną siłę gry.

Silniki wykorzystujące sztuczną inteligencję:
• Stockfish 17 [12] – jeden z najsilniejszych dostęp-

nych silników, oparty na zaawansowanych metodach

przeszukiwania drzewa gry. Od 2020 roku korzysta z

efektywnie aktualizowanej sieci neuronowej

(NNUE), co umocniło jego pozycję w ścisłej czo-

łówce pomiędzy silnikami szachowymi. Wersja 17

została wydana w 2023r.,
• Lc0 v0.31.2 (Leela Chess Zero) [13] – silnik oparty

na sieciach neuronowych oraz uczeniu ze wzmocnie-

niem, wykorzystujący uczenie maszynowe i metodę
Monte Carlo Tree Search (MCTS). Jest to ogólnodo-
stępna wersja AlphaZero, która rezygnuje z klasycz-

nych heurystyk i uczy się grając samodzielnie, prze-

ciwko samemu sobie,

• Komodo Dragon 1 [14] – silnik łączący klasyczne
algorytmy z oceną pozycyjną, znany ze strategicznej
i solidnej gry. Podobnie jak Stockfish, wykorzystuje

efektywnie aktualizujące sieci neuronowe (NNUE).

We wcześniejszej wersji bez „1” w nazwie, Komodo
Dragon bazował jedynie na standardowych algoryt-

mach.

Silniki klasyczne (bez wykorzystania AI):

• Houdini 1.5a [15] – silnik o wysokiej sile gry, szcze-

gólnie skuteczny w dynamicznych i taktycznych po-
zycjach. Bazuje na klasycznych heurystykach oraz

obszernej bazie debiutów z archiwalnych partii arcy-

mistrzów. W badaniu zastosowano wersję 1.5a, jedną
z wcześniejszych, lecz wciąż sprawną,

• Andscacs 0.9432n – hiszpański silnik charakteryzu-
jący się wydajnością i efektywną heurystyką oceny
pozycji. Wyróżnia się skutecznością zarówno w grze

pasywnej, jak i agresywnej, stosując zoptymalizo-

wany algorytm alfa-beta,

• Gull 3 32bit – silnik znany z dynamicznej gry

i dobrej optymalizacji. Często konkuruje z czoło-
wymi silnikami, cechuje się niskim zużyciem zaso-
bów systemowych. Podobnie jak Houdini oraz And-

scacs, bazuje na standardowych algorytmach, bez

wykorzystania AI.

3.2. Pozycje startowe w rozgrywkach

Klasyczna pozycja startowa (Rysunek 1) –

standardowa konfiguracja figur stosowana we

wszystkich tradycyjnych turniejach. W tym ustawieniu

białe mają niewielką przewagę, wynikającą z faktu
rozpoczęcia partii.

Rysunek 1: Standardowa pozycja szachowa.

Pozycja ze straconym tempem przez białe (Rysunek 2)

– ustawienie, w którym białe rozpoczynają grę od
nieoptymalnego ruchu, co daje przewagę czarnym.
Umożliwia to ocenę wpływu inicjatywy w pozycji oraz
utraty wyboru pierwszego ruchu przez białe.

Rysunek 2: Pozycja ze straconym tempem.

Szachy Fischera (Rysunek 3) – wariant szachów, w

którym pozycje figur na linii podstawowej są losowane,
zgodnie z zasadami Chess960. Eliminuje to znaczenie

przygotowania debiutowego, zwiększając rolę
kreatywności i elastyczności. Wariant ten został
opracowany przez byłego mistrza świata Bobby’ego
Fischera.

Rysunek 3: Pozycja chess960.

Journal of Computer Sciences Institute 37 (2025) 436-442

439

4. Wyniki

Po przeprowadzonych turniejach w różnych konfigura-
cjach zebrano dane, na których podstawie przedstawiono
wyniki. Rezultaty zaprezentowane w tabelach przedsta-

wiają procentowy rezultat (skuteczność), liczbę zwy-
cięstw, remisów oraz porażek. Każda z tabel opisuje wy-
niki z jednej z dziewięciu konfiguracji, w której był prze-
prowadzany turniej.

W pozycji klasycznej przy tempie 1min+1s najwyż-
szy wynik uzyskały silniki Stockfish i Komodo Dragon

(używające NNUE), które nie przegrały żadnej partii.
Lc0, wykorzystujący uczenie ze wzmocnieniem zakoń-
czył test z wynikiem skuteczności na poziomie 50%, na-

tomiast klasyczne silniki (Gull, Houdini, Andscacs) wy-

padły najsłabiej. Gull uzyskał więcej zwycięstw niż Lc0,
ale brak remisów obniżył jego ogólny wynik. Wyniki są
widoczne w Tabeli 1.

Tabela 1: Pozycja klasyczna, 1min+1s [S – skuteczność, Z – liczba

zwycięstw, R – liczba remisów, P – liczba porażek]

Silnik S (%) Z R P

Stockfish 80 6 4 0

Komodo Dragon 80 6 4 0

Lc0 50 3 4 3

Gull 40 4 0 6

Andscacs 25 1 3 6

Houdini 25 2 1 7

Dla pozycji klasycznej z czasem 3min+2s Stockfish i

Komodo Dragon ponownie osiągnęły najwyższe wyniki,
podkreślając przewagę sieci neuronowych. Lc0 przegrał
aż 5 partii, zrównując wynik z Andscacs, który w swojej
implementacji wykorzystuje jedynie standardowe algo-

rytmy. Najsłabiej wypadły Houdini i Gull, przegrywając
6 z 10 partii, co przedstawia Tabela 2.

Tabela 2: Pozycja klasyczna, 3min+2s [S – skuteczność, Z – liczba

zwycięstw, R – liczba remisów, P – liczba porażek]

Silnik S (%) Z R P

Stockfish 85 7 3 0

Komodo Dragon 75 6 3 1

Lc0 40 3 2 5

Andscacs 40 3 2 5

Gull 35 3 1 6

Houdini 25 1 3 6

W przypadku konfiguracji 5min+2s, Stockfish uzy-

skał najwyższy wynik, przewyższając Komodo. Lc0 zna-

cząco zwiększył poziom skuteczności, co sugeruje na

znaczący wpływ dłuższego czasu na namysł dla techniki
uczenia ze wzmocnieniem. Natomiast Gull i Houdini po-

nownie zajęły ostatnie miejsca, co jest widoczne w Ta-

beli 3.

Tabela 3: Pozycja klasyczna, 5min+2s [S – skuteczność, Z – liczba

zwycięstw, R – liczba remisów, P – liczba porażek]

Silnik S (%) Z R P

Stockfish 85 7 3 0

Komodo Dragon 75 5 5 0

Lc0 70 6 2 2

Andscacs 30 1 4 5

Gull 25 3 3 6

Houdini 15 0 3 7

Tabela 4 ukazuje dominację silników Stockfish
i Komodo Dragon w pozycji ze straconym tempem dla

białych. Lc0 utrzymał stabilny, umiarkowany poziom. W

odróżnieniu od silników wykorzystujących AI, standar-
dowe silniki były w stanie wygrać jedynie jedną
z dziesięciu partii. Mógł na to wpłynąć znacząco ograni-
czony czas na wybór posunięcia w bardzo nietypowej po-
zycji.

Tabela 4: Pozycja ze straconym tempem białych, 1min+1s

[S – skuteczność, Z – liczba zwycięstw, R – liczba remisów,
P – liczba porażek]

Silnik S (%) Z R P

Stockfish 90 8 2 0

Komodo Dragon 80 7 2 1

Lc0 65 5 3 2

Houdini 30 1 4 5

Gull 20 1 2 7

Andscacs 15 1 1 8

Według wyników z Tabeli 5, w tempie 3min+2s, gor-

sza pozycja nie przeszkodziła silnikowi Stockfish

w dominacji. Lc0 wykazał się dużą liczbą remisów, co
dało mu trzecie miejsce. Tym razem Andscacs uzyskał
najgorszy wynik skuteczności, na poziomie 20%. Stan-

dardowe silniki odnotowały nieznaczną poprawę sku-
teczności względem szybszego tempa gry.

Tabela 5: Pozycja ze straconym tempem białych, 3min+2s

[S – skuteczność, Z – liczba zwycięstw, R – liczba remisów,
P – liczba porażek]

Silnik S (%) Z R P

Stockfish 90 8 2 0

Komodo Dragon 75 6 3 1

Lc0 55 3 5 2

Gull 35 2 3 5

Houdini 25 2 1 7

Andscacs 20 1 2 7

Przy 5min+2s Stockfish i Komodo utrzymały wysoką
skuteczność. Lc0 wygrał tylko 3 partie, pomimo dłuż-
szego czasu na wybór najlepszego posunięcia. Wskazuje
to na przewagę sieci neuronowych nad uczeniem ze
wzmocnieniem w niestandardowych pozycjach. Houdini

i Gull ponownie wypadły słabo, osiągając odpowiednio
1 i 0 zwycięstw. Wyniki te przedstawia Tabela 6.

Tabela 6: Pozycja ze straconym tempem białych, 5min+2s

[S – skuteczność, Z – liczba zwycięstw, R – liczba remisów,
P – liczba porażek]

Silnik S (%) Z R P

Stockfish 90 8 2 0

Komodo Dragon 80 7 2 1

Lc0 45 3 3 4

Andscacs 35 2 3 5

Houdini 25 1 3 6

Gull 25 0 5 5

W partiach typu Chess960, w tempie 1min+1s, Stock-

fish i Komodo ponownie zdominowały rywalizację, co
wyraźnie widoczne jest w Tabeli 7. Zastosowanie NNUE

w implementacjach tych silników okazało się nieza-
wodne w każdym typie pozycji. Pozostałe silniki uzy-
skały znacznie niższe wyniki. Lc0 uzyskało najniższą
skuteczność w porównaniu z innymi konfiguracjami tur-
niejów, zrównując poziom do silników wykorzystują-
cych standardowe algorytmy (Andscacs, Gull, Houdini).

Journal of Computer Sciences Institute 37 (2025) 436-442

440

Powodem tak niezadowalających rezultatów może być
połączenie skomplikowanej pozycji z szybkim tempem
gry.

Tabela 7: Pozycja Chess960, 1min+1s [S – skuteczność, Z – liczba

zwycięstw, R – liczba remisów, P – liczba porażek]

Silnik S (%) Z R P

Stockfish 90 8 2 0

Komodo Dragon 85 7 3 0

Andscacs 35 1 5 4

Lc0 30 1 4 5

Houdini 30 2 2 6

Gull 30 2 2 6

Dla pozycji „Szachów Fischera” z tempem 3min+2s

dominacja Stockfisha utrzymała się, ponownie nie prze-
grał on żadnej partii. Lc0 był trzeci, głównie dzięki remi-
som. Dodatkowy czas pozwolił mu poprawić wynik
względem szybszego tempa gry w tej pozycji. W dolnej

części Tabeli 8 znajdują się Houdini i Andscacs.

Tabela 8: Pozycja Chess960, 3min+2s [S – skuteczność, Z – liczba

zwycięstw, R – liczba remisów, P – liczba porażek]

Silnik S (%) Z R P

Stockfish 90 8 2 0

Komodo Dragon 75 6 3 1

Lc0 55 3 5 2

Gull 35 2 3 5

Andscacs 25 1 3 6

Houdini 20 1 2 7

W ostatnim teście (Chess960, 5min+2s), Stockfish

ponownie zakończył turniej bez porażki. Komodo Dra-
gon i Lc0 utrzymały wysoką formę, oddzielając silniki
wykorzystujące AI z klasycznymi implementacjami.

Houdini zakończył rundę z ośmioma porażkami i wyni-
kiem na poziomie 15%. Wyniki przedstawia Tabela 9.

Tabela 9: Pozycja Chess960, 5min+2s [S – skuteczność, Z – liczba

zwycięstw, R – liczba remisów, P – liczba porażek]

Silnik S (%) Z R P

Stockfish 90 8 2 0

Komodo Dragon 70 5 4 1

Lc0 55 4 3 3

Andscacs 35 3 1 6

Gull 35 2 3 5

Houdini 15 1 1 8

Na podstawie wszystkich przeprowadzonych testów
można zauważyć wyraźną dominację silnika Stockfish,

który nie przegrał żadnej partii niezależnie od ustawienia
początkowego ani tempa gry. W każdej konfiguracji
utrzymywał najwyższą skuteczność, co potwierdza jego
pozycję lidera wśród współczesnych silników szacho-
wych. Komodo Dragon również wykazywał bardzo wy-
soką stabilność i siłę gry, ustępując jedynie minimalnie
Stockfishowi. Oba silniki wykorzystujące efektywnie ak-
tualizujące sieci neuronowe wyróżniły się wysoką sku-
tecznością na tle pozostałych. Lc0 prezentowało umiar-

kowane wyniki, jego technika uczenia ze wzmocnieniem

była wyraźnie skuteczniejsza od klasycznych algoryt-

mów zawężania gałęzi przeszukiwań najlepszych posu-
nięć, lecz również słabsza w stosunku do NNUE. Najgo-

rzej wypadły Houdini, Gull i Andscacs, które miały pro-
blemy ze skutecznością w bardziej złożonych lub

dynamicznych warunkach. Oznacza to, że klasyczne me-
tody nie są w stanie konkurować z nowoczesnymi tech-
nikami wykorzystującymi sztuczną inteligencję.

5. Dyskusja

Przeprowadzone badania porównawcze dla sześciu wy-
branych silników szachowych (Stockfish, Komodo Dra-
gon, Lc0, Gull, Andscacs i Houdini) w trzech różnych
typach pozycji oraz przy trzech różnych kontrolach czasu
dostarczyły kompleksowego obrazu ich wydajności.
Analiza zgromadzonych danych pozwala na obserwację
istotnych zależności dotyczących skuteczności poszcze-
gólnych silników w zależności od warunków gry oraz za-
stosowanych technik sztucznej inteligencji.

Wyniki silników w pozycjach klasycznych dla trzech
temp gry przedstawiono na Rysunku 4. Widoczna jest

wyraźna dominacja silników wykorzystujących AI.
Stockfish i Komodo Dragon, których implementacje
opierają się na efektywnie aktualizujących sieciach neu-
ronowych utrzymują wysoki i stabilny poziom skutecz-

ności niezależnie od czasu gry. Lc0, bazujące na uczeniu
ze wzmocnieniem wykazuje zróżnicowaną skuteczność –

od około 40% przy tempie 3min+2s do niemal 70% przy

5min+2s, co sugeruje, że dłuższy czas na analizę pozycji
znacząco poprawia jego wyniki. Silniki bazujące na kla-
sycznych heurystykach (Gull, Andscacs, Houdini) osią-
gają najniższe rezultaty, które dodatkowo maleją przy
wydłużeniu czasu gry – z poziomu około 30% do nieco

ponad 20%.

Rysunek 4: Skuteczność technik uczenia w pozycji klasycznej.

Analizując wyniki dla pozycji ze straconym tempem
dla białych (Rysunek 5), ponownie widoczna jest domi-

nacja silników Stockfish i Komodo Dragon, utrzymują-
cych około 85% skuteczności. Interesującą obserwacją
jest spadek wyników Lc0 wraz z wydłużeniem czasu gry
– od około 65% przy 1min+1s do 45% przy 5min+2s.

Klasyczne silniki wykazują odwrotną tendencję – im

więcej czasu na analizę, tym lepsze ich wyniki, co po-
twierdza skuteczność algorytmów alfa-beta przy wydłu-
żonym czasie gry. Jednak wyniki te nadal nie są nawet

zbliżone do skuteczności silników wykorzystujących
NNUE (Stockfish, Komodo Dragon) lub uczenie ze

wzmocnieniem (Lc0).

Journal of Computer Sciences Institute 37 (2025) 436-442

441

Rysunek 5: Skuteczność technik uczenia w pozycji ze

 straconym tempem białych.

Na Rysunku 6 przedstawiono skuteczność w loso-
wych pozycjach Chess960. Stockfish i Komodo Dragon

ponownie osiągają najwyższe wyniki, choć zauważalna
jest lekka tendencja spadkowa przy dłuższych tempach.
Z kolei Lc0, wykorzystujący uczenie ze wzmocnieniem,
osiąga znaczący wzrost skuteczności – z 30% przy

1min+1s do ponad 55% przy 3min+2s i 5min+2s. Suge-

ruje to, że silnik ten wymaga więcej czasu na analizę nie-
typowych pozycji. Klasyczne silniki, jak Gull, Houdini i

Andscacs, osiągają najsłabsze wyniki i nie wykazują po-

prawy wyników w przypadku wydłużonego czasu gry.
Widoczna jest znacząca przewaga silników wykorzystu-
jących techniki sztucznej inteligencji.

Rysunek 6: Skuteczność technik uczenia w pozycji chess960.

Pierwsza mapa cieplna (Rysunek 7) przedstawia sku-

teczność silników w zależności od tempa gry, niezależnie
od pozycji startowej. Ukazuje ona bezsprzeczną prze-
wagę implementacji wykorzystujących AI. Stockfish ce-

chuje się niezwykłą stabilnością, osiągając 80–90% sku-

teczności we wszystkich tempach gry. Komodo Dragon
osiąga nieznacznie niższe wartości. Lc0 charakteryzuje

się dużą stabilnością skuteczności, lecz na znacznie niż-
szym poziomie skuteczności niż silniki korzystające z
sieci neuronowych (Stockfish, Komodo Dragon). Kla-

syczne silniki (Gull, Andscacs, Houdini) pozostają
znacznie poniżej 40% skuteczności, niezależnie od do-
stępnego czasu. Najsłabiej wypada Houdini, który po-
siada skuteczność na poziomie 20% w każdym

możliwym tempie rozgrywki. Oznacza to, że dodatkowy
czas na znalezienie ruchu nie ma większego znaczenia
dla klasycznych silników szachowych.

Rysunek 7: Mapa cieplna skuteczności silników w zależności od
tempa gry.

Druga mapa cieplna (Rysunek 8) koncentruje się na
wpływie pozycji startowej na skuteczność silników, nie-
zależnie od tempa gry. Stockfish i Komodo Dragon po-
zostają liderami we wszystkich układach początkowych.
Lc0 uzyskuje najlepsze wyniki w pozycjach klasycz-

nych, a jego skuteczność wyraźnie spada w niestandar-
dowych pozycjach, co może wskazywać na ograniczenia
podejścia opartego na uczeniu ze wzmocnieniem w wa-

runkach odbiegających od wzorcowych. Klasyczne sil-
niki nie wykazują znaczących różnic między typami po-
zycji, lecz ich ogólna skuteczność jest niska.

Rysunek 8: Mapa cieplna skuteczności silników w zależności od po-
zycji początkowej.

Podsumowując, przeprowadzone badania wyraźnie
wskazują na dominację silników wykorzystujących zaa-
wansowane techniki sztucznej inteligencji – zarówno
sieci neuronowe (Stockfish, Komodo Dragon), jak

i uczenie ze wzmocnieniem (Lc0). Silniki te konsekwent-

nie osiągają najwyższe wyniki we wszystkich warunkach

testowych. Natomiast standardowe implementacje osią-
gały najsłabsze wyniki. Zauważalne są również zróżni-
cowane reakcje silników na długość kontroli czasu - nie-

które silniki zyskują przewagę przy dłuższej analizie

(zwłaszcza Lc0), podczas gdy inne nie odnotowują zna-
czącej poprawy. Wskazuje to na złożone zależności po-
między architekturą silnika szachowego, typem zastoso-

wanego algorytmu oraz warunkami gry, co jest istotnym

obszarem do dalszych badań i optymalizacji. Kolor bie-

rek nie miał dużego wpływu na skuteczność silników

Journal of Computer Sciences Institute 37 (2025) 436-442

442

szachowych, jednak można było odnotować większą
liczbę remisów i przegranych partii po stronie koloru

czarnego.

6. Wnioski

Przeprowadzone badania pozwoliły na sformułowanie
wniosków oraz potwierdziły wszystkie trzy postawione
hipotezy. Wykazano, że technika uczenia silnika szacho-
wego (H1), tempo gry (H2) oraz początkowe ustawienie
figur (H3) mają istotny wpływ na jego skuteczność.

Silniki wykorzystujące zaawansowane techniki
sztucznej inteligencji – sieci neuronowe (Stockfish, Ko-

modo Dragon) oraz uczenie ze wzmocnieniem (Lc0) –

konsekwentnie osiągały lepsze wyniki niż silniki bazu-
jące na klasycznych algorytmach heurystycznych (Hou-
dini, Gull, Andscacs). Szczególnie wyraźna przewaga AI
widoczna była w niestandardowych warunkach gry, ta-

kich jak losowe pozycje Chess960 czy pozycje ze straco-

nym tempem. Stockfish wykazał największą stabilność i
dominację – nie przegrał żadnej partii niezależnie od po-
zycji ani tempa gry. Komodo Dragon utrzymywał rów-
nież bardzo wysoką skuteczność. Lc0 prezentował więk-
szą zmienność wyników – zyskiwał na dłuższym czasie
gry w pozycjach klasycznych, ale tracił przewagę w ukła-
dach niestandardowych, co wskazuje na złożoną interak-
cję między algorytmem a strukturą pozycji.

Przeprowadzone badania, mimo kompleksowego po-

dejścia, posiadają pewne ograniczenia, które warto
uwzględnić i wskazać kierunki przyszłych badań, które
powinny objąć:

• analizę wpływu konfiguracji sprzętowej (CPU vs
GPU) na wydajność silników AI,

• rozszerzenie testów o większą liczbę partii dla zwięk-
szenia istotności statystycznej,

• głębszą analizę specyficznych typów pozycji (np.
końcówki, pozycje taktyczne),

• wykorzystanie nowszych wersji istniejących silników
oraz innych obiecujących implementacji.
Sztuczna inteligencja w szachach nie tylko przewyż-

szyła klasyczne metody, ale również ujawniła potencjał
dalszego rozwoju poprzez adaptację do skomplikowa-

nych zadań i pozycji. Najsilniejsze silniki nie tylko wy-

grywają, ale wykazują odporność na zmienne warunki
gry. Przyszłość rywalizacji silników szachowych będzie
zależeć od tego, jak skutecznie uda się połączyć moc ob-
liczeniową z elastycznymi, uczącymi się modelami.

Literatura

[1] A. Elo, The Proposed USCF Rating System, Its Deve-

lopment, Theory, and Applications, Chess Life 22 (1967)

242–247.

[2] M. Sójka, Performance Comparison Between Selected

Chess Engines, Journal of Computer Sciences Institute 24

(2022) 228–235.

[3] Strona lichess.org, zasady wariantu chess960, https://li-

chess.org/variant/chess960, [01.07.2025].

[4] D. Silver, T. Hubert, J. Schrittwieser, A General Reinfor-

cement Learning Algorithm That Masters Chess, Shogi,

and Go Through Self-Play, Science 362 (2018) 1140–
1144, https://doi.org/10.1126/science.aar6404.

[5] T. Zahavy, V. Veeriah, S. Hou, Diversifying AI: Towards

Creative Chess With AlphaZero, arXiv (2023),

https://doi.org/10.48550/arXiv.2308.09175.

[6] W. B. Putra, L. Heryawan, Applying Alpha-Beta Algo-

rithm in a Chess Engine, Jurnal Teknosains 6 (2016) 37–
43.

[7] M. Block, M. Bader, E. Tapia, Using Reinforcement Lear-

ning in Chess Engines, Research in Computing Science 35

(2008) 31–40.

[8] Y. Nasu, Efficiently Updatable Neural-Network-Based

Evaluation Functions for Computer Shogi, In The 28th

World Computer Shogi Championship Appeal Document

(2018) 185.

[9] S. Y. G. Chi, Exploring the Performance of Deep Residual

Networks in Crazyhouse Chess, arXiv (2019),

https://doi.org/10.48550/arXiv.1908.09296.

[10] Q. A. Sadmine, A. Husna, M. Müller, Stockfish or Leela

Chess Zero? A Comparison Against Endgame Tablebases,

In Advances in Computer Games, Springer Nature Swit-

zerland (2023) 26–35.

[11] Strona internetowa programu Lucas Chess, https://lu-

caschess.pythonanywhere.com, [01.07.2025].

[12] Strona internetowa silnika szachowego Stockfish,

https://stockfishchess.org, [01.07.2025].

[13] Strona internetowa silnika szachowego Lc0,

https://lczero.org, [01.07.2025].

[14] Strona internetowa silnika szachowego Komodo Dragon,

https://komodochess.com, [01.07.2025].

[15] Geneza i opis silnika szachowego Houdini,

https://www.chessprogramming.org/Houdini,

[01.07.2025].

https://lichess.org/variant/chess960
https://lichess.org/variant/chess960
https://doi.org/10.1126/science.aar6404
https://doi.org/10.48550/arXiv.2308.09175
https://doi.org/10.48550/arXiv.1908.09296
https://lucaschess.pythonanywhere.com/home
https://lucaschess.pythonanywhere.com/home
https://stockfishchess.org/
https://lczero.org/
https://komodochess.com/
https://www.chessprogramming.org/Houdini

