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Evaluating the effectiveness of selected tools in recognizing emotions
from facial photos

Ocena skuteczno$ci wybranych narzedzi w rozpoznawaniu emocji na
podstawie zdje¢ twarzy
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Abstract

Emotion recognition from facial images has become a key area in computer vision and affective computing. Deep learning
models such as convolutional neural networks and vision transformers have shown high potential in this domain. In this
study, the performance of two representative architectures, ResNet-50, a convolutional neural networks based model, and
ViT-B/16, a transformer-based model, is evaluated on the widely used Facial Expression Recognition 2013 dataset. Both
models are trained using data augmentation and regularization techniques to enhance generalization. Their effectiveness
is assessed using metrics including accuracy, precision, recall, and F1-score, alongside a detailed examination of confu-
sion matrices. The observed differences in classification performance across emotion categories highlight the influence
of architectural design on model behavior. The obtained results serve as a reference point for selecting appropriate deep
learning architectures.
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Streszczenie

Rozpoznawanie emocji na podstawie zdjeé twarzy stanowi istotny obszar badan w dziedzinie wizji komputerowej oraz
obliczeniowej analizy emocji. Modele glgbokiego uczenia, takie jak konwolucyjne sieci neuronowe oraz transformatory
wizyjne, wykazuja duzy potencjat w tym zakresie. W niniejszym badaniu oceniono skuteczno$¢ dwoch reprezentatyw-
nych architektur, ResNet-50, opartej na konwolucyjnych sieciach neuronowych, oraz ViT-B/16, opartej na mechanizmie
transformatora na szeroko stosowanym zbiorze danych Facial Expression Recognition 2013. Oba modele trenowano z za-
stosowaniem technik augmentacji danych i regularyzacji w celu poprawy generalizacji. Ocena skutecznosci zostata prze-
prowadzona z wykorzystaniem metryk takich jak doktadno$¢, precyzja, czuto$¢ oraz miara F1, a takze poprzez analiz¢
macierzy pomytek. Zaobserwowane réznice w jakosci klasyfikacji poszczegoélnych emocji ukazujg wptyw architektury
modelu na jego zachowanie. Uzyskane rezultaty stanowig zrddlo odniesienia przy wyborze odpowiednich architektur
glebokiego uczenia.

Stowa kluczowe: konwolucyjne sieci neuronowe; transformatory wizyjne; rozpoznawanie emocji
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1. Introduction a series of convolutional and pooling layers that hierar-
chically capture spatial dependencies, followed by fully
connected layers for final classification. The ability of
CNNs to learn spatial hierarchies and generalize from
raw pixel data has made them a dominant approach in
visual recognition problems across a wide range of do-
mains [5].

More recently, Vision Transformers (ViTs) — trans-
former-based architectures originally developed for nat-
ural language processing — have emerged as a compelling
alternative, offering an enhanced ability to capture long-
range dependencies in image data [6-7]. Unlike CNNss,
which rely on local receptive fields and hierarchical fea-
ture extraction [8], ViTs treat an image as a sequence of
fixed-size patches and apply self-attention mechanisms
to model global dependencies between them [9]. ViTs
have demonstrated competitive performance in image
classification, especially when trained on large datasets
[10]. Their ability to capture long-range relationships and
model contextual information across the entire image

Emotion recognition from facial images has become
a significant area of interest in the intersection of com-
puter vision, psychology, and artificial intelligence. Un-
derstanding human emotions through automated systems
enables a wide range of applications, including human-
computer interaction, mental health assessment, and sur-
veillance [1-2].

Deep learning techniques, particularly convolutional
neural networks (CNNs), have demonstrated high effec-
tiveness in visual emotion classification [3]. These archi-
tectures are specifically designed to automatically extract
relevant visual features from image data with minimal
preprocessing. The core principle involves the use of
convolutional layers, which apply learnable filters across
the input image to detect distinctive patterns such as
edges, textures, and progressively more complex struc-
tures [4]. CNNs are particularly well-suited for tasks such
as image classification, object detection, and semantic
segmentation. Typical CNN architectures consist of
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makes them well-suited for complex visual tasks. How-
ever, they tend to require more data and computational
resources compared to CNNss during training [11].

These two paradigms represent distinct architectural
approaches, each with its own strengths and limitations
in terms of classification accuracy, model complexity,
and generalization capacity.

The Facial Expression Recognition 2013 (FER2013)
dataset, introduced as part of the ICML 2013 Challenges
in Representation Learning, remains one of the most
widely used benchmarks for facial emotion recognition
[12]. Despite its relatively modest image resolution, it
provides a valuable testing ground for evaluating the ro-
bustness and generalization capabilities of emotion
recognition models.

The aim is to identify performance differences be-
tween two deep learning architectures — ResNet-50,
a well-established convolutional neural network based
on residual learning [13], and ViT-B/16, a transformer-
based model adapted for image classification — using key
evaluation metrics such as accuracy, precision, recall, F1-
score, and confusion matrix analysis. Both models were
independently instantiated and fine-tuned to ensure
a consistent evaluation. Particular attention was given to
maintaining equivalent preprocessing steps and data aug-
mentation strategies across architectures. As a result, any
observed differences in performance can be attributed
primarily to the model design itself rather than external
factors. The impact of architectural design on emotion
recognition effectiveness is assessed, offering insights
into the selection of suitable models for real-world emo-
tion classification applications.

2. Related works

Harnessing the expressive power of deep neural net-
works, contemporary emotion-classification systems are
beginning to decode the subtle patterns of human feeling
embedded in speech, text, and facial cues with unprece-
dented accuracy [14-15].

Facial expression recognition has been extensively
studied with deep learning models achieving notable suc-
cess, particularly on benchmark datasets such as
FER2013 [16]. One of the most commonly applied archi-
tectures is ResNet-50 due to its robust feature extraction
and transfer learning capabilities.

Altaha et al. [17] proposed a ResNet-50-based pipe-
line incorporating ArcFace features and a Tiny-Siamese
network for classification. Designed to reduce memory
load and training time, the approach achieved 60.43% ac-
curacy on FER2013, illustrating a trade-off between
computational efficiency and recognition performance.

Sheng and Lau [18] compared multiple ResNet vari-
ants, including ResNetl8, ResNet34, and ResNet-50.
The ResNet-50 model achieved the highest accuracy in
their study, attaining 65.40% after fine-tuning.

Soni et al. [19] evaluated two deep CNN architec-
tures, VGG and ResNet-50 on the FER2013 dataset, ob-
taining accuracies of 50.12% and 52.40%, respectively.
After adding two dense layers to each architecture, the
results improved to 55.90% for VGG and 57.20% for

ResNet-50. By combining both models, they achieved an
accuracy of 66.15%, demonstrating that ensemble meth-
ods can improve recognition in complex environments.

Li and Li [20] proposed an architecture integrating
spatial and frequency domain transformations, using
ResNet-50 pretrained on VGGFace?2 for appearance fea-
tures and combining it with geometric features from
dense SIFT. Fine-tuned on FER2013 and RAF Basic, the
ensemble model achieved 66.97% accuracy on the RAF
Compound set.

More recently, ViTs have emerged as a strong alter-
native to CNNs in facial expression recognition tasks.
Bobojanov et al. [21] performed a comparative analysis
of multiple ViT architectures, applying dataset cleaning
and augmentation to reduce class imbalance. Mobile ViT
emerged as the most effective, achieving 62.73% accu-
racy on FER2013.

Soni et al. [22] applied a fine-tuned ViT model to the
FER2013 dataset with extensive preprocessing and aug-
mentation. Their approach achieved an accuracy of
70.00%, underlining the transformer’s ability to general-
ize across emotional classes.

Song [23] introduced novel ViT variants (ViTTL and
VIiTEH) that process self-attention outputs through
global average pooling, improving the detection of local
patterns. The best variant reached 70.37% accuracy.

Bie et al. [24] presented Swin-FER, a Swin Trans-
former that fuses middle and deep-layer features while
controlling parameter growth through mean, split and
group convolution modules. The model reached 71.11%
accuracy on FER2013.

While ResNet-50 remains a strong and widely
adopted baseline for facial expression recognition, ViT-
based architectures that incorporate hybrid mechanisms
or architectural refinements have demonstrated consist-
ently competitive and, in some cases, superior perfor-
mance. Reported accuracies for ResNet-50-based models
on the FER2013 dataset range from 60.43% to 66.97%,
reflecting the impact of design choices and feature inte-
gration strategies. In comparison, ViT-based approaches
achieve accuracies from 62.73% to 71.11% (Table 1).

Table 1: Comparison of the classification accuracies achieved by
ResNet-50- and ViT-based models across datasets reported in selected

studies

Study Model Dataset Accuracy
[17] ResNet-50 FER2013  60.43%
[18] ResNet-50 FER2013  65.40%
[19] ResNet-50 and VGG~ FER2013  66.15%
[20] ResNet-50 FER2013  66.97%

and

RAF-DB
[21] Mobile ViT FER2013  62.73%
[22] ViT FER2013  70.00%
[23] ViT FER2013  70.37%
[24] Swin Transformer FER2013  71.11%

3. Material and methods
3.1. ResNet-50

ResNet-50 (Residual Network, 50 layers) is a convolu-
tional neural network architecture introduced by He et al.
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in 2016 [25]. It addresses the problem of vanishing gra-
dients in deep networks by introducing residual connec-
tions, which allow the network to learn identity mappings
and thus preserve gradient flow through many layers.

The architecture consists of 49 convolutional layers
and one fully connected layer at the end. The network is
structured into residual blocks, each containing convolu-
tional layers followed by batch normalization and ReLU
activation. A key feature of these blocks is the shortcut
connection, which bypasses one or more layers, allowing
the model to train deeper networks more effectively. Res-
Net-50 is widely used in image classification tasks due to
its balance between depth, accuracy, and computational
efficiency [26].

3.2. ViT-B/16

ViT-B/16 (Vision Transformer Base with a 16x16 input
patch size) is a Vision Transformer model introduced by
Dosovitskiy et al. in 2021 [6], which relies on a trans-
former encoder. In ViT-B/16, the input images are first
resized to 224x224 pixels and partitioned into 196 non-
overlapping 16x16 patches, which are then linearly em-
bedded and combined with positional encodings to retain
spatial information. A learnable classification token
([CLS] token) is prepended to serve as a representation
of an image.

The resulting 197-token sequence passes through
a stack of 12 Transformer encoder layers, each compris-
ing 12-head self-attention and a feedforward network that
expands the 768-dimensional representation to 3072 di-
mensions and then reduces it back to 768, using Gaussian
Error Linear Unit (GELU) activations. Ultimately, [CLS]
token is fed into a single linear layer that produces the
class logits for image classification [9-10].

3.3. Facial Expression Recognition 2013 dataset

Facial Expression Recognition 2013 dataset is one of the
most widely used benchmarks for training and evaluating
models in the field of facial emotion recognition. It was
introduced during the ICML 2013 Challenges in Repre-
sentation Learning and contains a total of 35,887 gray-
scale images, each with a resolution of 48x48 pixels [16].

This dataset is divided into three subsets: 28,709 im-
ages for training, 3,589 for validation (public test), and
3,589 for testing (private test). Each image is labeled with
one of seven emotion categories: angry, disgust, fear,
happy, sad, surprise, and neutral (Figure 1).
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Figure 1: FER2013 class distribution.

Despite its relatively low resolution, FER2013 has
proven effective for benchmarking deep learning models
due to its size and diversity.

However, the dataset presents several challenges. The
class distribution is imbalanced, with certain emotions
like disgust being significantly underrepresented. More-
over, facial expressions in the images vary in pose, light-
ing, and occlusion (Figure 2), which introduces addi-
tional complexity and requires robust generalization ca-
pabilities from the models [27].
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Figure 2: Example images from the FER2013 dataset [15].
3.4. Image augmentation

To address data imbalance and enhance generalization,
data augmentation techniques and class-balanced
weighting were applied [28-29]. The augmentation pipe-
line included random resized cropping, horizontal and
vertical flips, affine transformations (rotation, transla-
tion, shear), and random erasing. These operations diver-
sify pose, lighting, and partial-occlusion patterns while
preserving the underlying facial content, providing the
model with a richer and more balanced training distribu-
tion.

3.5. Evaluation Metrics

In order to compare the performance of the evaluated
emotion recognition models, a set of well-established
evaluation metrics is utilized. These include accuracy,
precision, recall, Fl-score, and the confusion matrix,
each providing complementary insights into model be-
havior and effectiveness [30].

In statistical analysis of classification performance,
results are summarized in a confusion matrix that records
how many test samples the model assigns to each out-
come:

e True Positives (TP) — positive instances classified
correctly,

e True Negatives (TN) — negative instances classified
correctly,
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e False Positives (FP) — negative instances misclassi-
fied as positive,

e False Negatives (FN) — positive instances misclassi-
fied as negative.

An examination of the confusion matrix provides in-
sight into the model’s generalization ability and high-
lights misclassification patterns [31]. The matrix compo-
nents form the basis of evaluation metrics.

TP+ TN
TP+TN +FP+FN

where accuracy expresses the proportion of all images
that were classified correctly.

O

accuracy =

TP
TP + FP

where precision measures how many of the model’s pos-
itive predictions are actually correct.

Yo TP
recat = Ip ¥ FN

where recall quantifies the model’s ability to identify all
positive instances.

2

precision =

3

precision * recall 2TP
* =
precision +recall 2TP + FP + FN

F,=2 “
where F; score is the harmonic mean of precision and re-
call, balancing the trade-off between these two quantities
and proving especially informative under class-imbal-
ance conditions such as those present in the FER2013 da-
taset [32].

4. Results

The ResNet-50 model, pre-trained on ImageNet [33],
was fine-tuned [34] on the FER2013 dataset. This model
was trained for a maximum of 100 epochs with early
stopping activated; training concluded at epoch 40, se-
lecting the checkpoint with the highest validation score
[35].

During the first ten epochs both training and valida-
tion loss declined rapidly, intersecting at roughly 1.7, af-
ter which the validation curve stabilized (Figure 3).
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Figure 3: Training and validation loss over epochs for ResNet-50.

Validation accuracy increased during the initial train-
ing phase and subsequently plateaued at approximately
69% (Figure 4).
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Figure 4: Training and validation accuracy over epochs for ResNet-
50.

The normalized confusion matrix indicates the extent
to which the model can distinguish individual emotions
from one another (Figure 5). The diagonal values repre-
sent the recall for each class, whereas the off-diagonal
entries in a given row show the percentage of that class
that was misassigned to other labels. Happiness and sur-
prise are the most distinctly recognized emotions, with
86.70% of happiness images and 83.27% of surprise im-
ages classified correctly, and most of their remaining
misclassifications are evenly spread across the other five
classes.

Conversely, fear emerges as the most challenging
class, being misclassified most frequently as sadness or
anger. Some overlap is visible between neutral and sad-
ness as well, reflecting the subtle difference in facial cues
between these two moods. Disgust, despite having the
fewest samples in the dataset, achieves a recall of
65.77%, indicating that the class-balanced loss succeeded
in preventing systematic neglect of this minority cate-

gory.
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Predicted label

Figure 5: Normalized confusion matrix obtained by the ResNet-50
model on the FER2013 validation set.

The weighted-averaged Fl-score reaches 68.89%,
confirming that the network retains balanced perfor-
mance despite the pronounced class imbalance. The
macro-averaged Fl-score is 67.13%, indicating that no
single category dominates the overall performance and
that the model maintains a comparable level of sensitivity
across all seven emotions (Table 2).
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Table 2: Evaluation metrics for the ResNet-50 model on the
FER2013 dataset

ResNet-50 Precision  Recall F1-Score
(%) (%) (%)
angry 60.53 62.11 61.31
disgust 64.04 65.77 64.89
fear 58.31 50.39 54.06
happy 90.26 86.70 88.44
neutral 60.79 68.29 64.32
sad 56.35 55.49 55.92
surprise 78.73 83.27 80.94
accuracy 68.93
macro average 67.13
weighted average 68.89

The per-class and aggregate metrics confirm that the
ResNet-50 performs consistently across all classes and
attains an overall accuracy of 68.93% on FER2013.

The ViT-B/16 model, initialized with ImageNet
weights [33], was fine-tuned [34] on FER2013 dataset.
This model was trained with early-stopping monitor with
a patience window of twenty epochs, which identified the
optimal checkpoint at epoch 20, indicating that the trans-
former reached its peak validation performance sooner
than the convolutional model [35]. Training and valida-
tion loss exhibited a rapid initial decline followed by
a gradual, monotonic descent (Figure 6).
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Figure 6: Training and validation loss over epochs for ViT-B/16.
Validation accuracy increased progressively to

a maximum of 71.30%, indicating stable generalization
throughout training (Figure 7).
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Figure 7: Training and validation loss over epochs for ViT-B/16.

The normalized confusion matrix (Figure 8) provides
a detailed view of class-level behavior and highlights the
model’s relative strengths and weaknesses across catego-
ries. The model achieves its highest recall for happiness

at 88.44% and for surprise at 85.32%, underscoring its
capacity to capture the distinctive facial patterns associ-
ated with these high-expression emotions. Recall for dis-
gust reaches 72.07%, demonstrating effective learning
for this minority class despite limited sample availability.

In contrast, fear remains the most challenging emo-
tion; the majority of its misclassifications are funnelled
into the anger and sadness classes, indicating that the de-
cision boundary for fear still overlaps most strongly with
these two negative emotions. Neutral is most frequently
confused with sadness; 15% of neutral images are pre-
dicted as sadness, underscoring the subtle and subtle and
ambiguous visual distinction between these two low-in-
tensity expressions.
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Figure 8: Normalized confusion matrix obtained by the ViT-B/16
model on the FER2013 validation set.

The quantitative evaluation presented in the classifi-
cation report (Table 3) yields a weighted-averaged F1-
score of 71.16% and a macro-averaged Fl-score of
69.82%, confirming that performance is distributed
across all seven emotions rather than being dominated by
a subset of categories.

Table 3: Evaluation metrics for the ViT-B/16 model on the
FER2013 dataset

ViT-B/16 Precision Recall F1-Score
(%) (%) (%)
angry 60.17 67.01 63.41
disgust 68.38 72.07 70.18
fear 65.59 47.66 55.20
happy 90.54 88.44 89.48
neutral 66.54 69.99 68.22
sad 57.07 61.51 59.20
surprise 80.94 85.32 83.07
accuracy 71.30
macro average 69.82
weighted average 71.16

ViT-B/16 model fine-tuned on FER2013 achieved an
overall classification accuracy of 71.30%, supported by
consistently high scores across precision, recall and F1-
measure. These results confirm that the vision transform-
ers can reliably identify each of the seven basic emotions
while maintaining stable generalization throughout train-
ing.
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To better understand the internal mechanisms of both
models, Grad-CAM visualizations (Figure 9) were em-
ployed to identify which regions of the input images con-
tributed most to the final classification decisions [36].

The ResNet-50 model consistently focuses on local-
ized facial regions, particularly the eyes, mouth, and eye-
brows, suggesting its reliance on well-defined facial
landmarks. In contrast, the ViT-B/16 model exhibits
more distributed attention patterns, often capturing
broader contextual features across the entire face. While
this broader focus may offer resilience to noise or occlu-
sion, it also occasionally results in less concentrated acti-
vation, especially in ambiguous expressions.

Photo

ResNet-50

ViT-B/16

a

g £, |

Figure 9: Grad-CAM visualizations for selected images from the
FER2013 dataset, one per emotion category.

These observations underscore the architectural dis-
tinctions between convolutional and transformer-based
approaches in facial expression recognition. The contrast
in activation patterns highlights differing strategies in
feature prioritization, with ResNet-50 leveraging spatial
hierarchies and ViT-B/16 capitalizing on global context.

Such insights are valuable for selecting models in appli-
cations where interpretability, robustness, and sensitivity
to specific facial cues are critical.

5. Conclusions

ResNet-50 and Vision Transformer, both pre-trained on
ImageNet and fine-tuned on the FER2013 dataset,
demonstrated strong capabilities in facial emotion recog-
nition. ViT-B/16 achieved the highest validation accu-
racy at 71.30%, slightly outperforming ResNet-50, which
reached 68.93%, particularly in recognizing emotions
such as disgust and sadness. In contrast, ResNet-50
showed more stable behavior across training and gener-
ated clearer, spatially focused Grad-CAM visualizations.
Despite occasional confusion between ambiguous classes
like fear and sad, both models showed reliable generali-
zation.

The complementary strengths of convolutional and
transformer-based approaches suggest promising direc-
tions for further refinement, particularly in improving
class-level precision and leveraging hybrid or ensemble
strategies for enhanced interpretability and robustness in
real-world emotion recognition tasks.

It should be noted that both models were assessed
only on the FER2013 dataset, which is limited to low-
resolution, grayscale images. While FER2013 is a widely
adopted reference set, its characteristics may not capture
the full variability encountered in higher-resolution or in-
the-wild scenarios. Extending the evaluation to addi-
tional, more diverse datasets in future work would pro-
vide a broader view of the models’ generalizability.

Future work may also involve the use of other neural
network models [37], methods of aggregating classifica-
tion results or ensemble learning [38]. Other methods of
visualizing results such as SHAP Values [39] are also
worth considering.
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