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Abstract 

Emotion recognition from facial images has become a key area in computer vision and affective computing. Deep learning 

models such as convolutional neural networks and vision transformers have shown high potential in this domain. In this 

study, the performance of two representative architectures, ResNet-50, a convolutional neural networks based model, and 

ViT-B/16, a transformer-based model, is evaluated on the widely used Facial Expression Recognition 2013 dataset. Both 

models are trained using data augmentation and regularization techniques to enhance generalization. Their effectiveness 

is assessed using metrics including accuracy, precision, recall, and F1-score, alongside a detailed examination of confu-

sion matrices. The observed differences in classification performance across emotion categories highlight the influence 

of architectural design on model behavior. The obtained results serve as a reference point for selecting appropriate deep 

learning architectures. 
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Streszczenie 

Rozpoznawanie emocji na podstawie zdjęć twarzy stanowi istotny obszar badań w dziedzinie wizji komputerowej oraz 
obliczeniowej analizy emocji. Modele głębokiego uczenia, takie jak konwolucyjne sieci neuronowe oraz transformatory 
wizyjne, wykazują duży potencjał w tym zakresie. W niniejszym badaniu oceniono skuteczność dwóch reprezentatyw-
nych architektur, ResNet-50, opartej na konwolucyjnych sieciach neuronowych, oraz ViT-B/16, opartej na mechanizmie 

transformatora na szeroko stosowanym zbiorze danych Facial Expression Recognition 2013. Oba modele trenowano z za-

stosowaniem technik augmentacji danych i regularyzacji w celu poprawy generalizacji. Ocena skuteczności została prze-
prowadzona z wykorzystaniem metryk takich jak dokładność, precyzja, czułość oraz miara F1, a także poprzez analizę 
macierzy pomyłek. Zaobserwowane różnice w jakości klasyfikacji poszczególnych emocji ukazują wpływ architektury 

modelu na jego zachowanie. Uzyskane rezultaty stanowią źródło odniesienia przy wyborze odpowiednich architektur 
głębokiego uczenia. 

Słowa kluczowe: konwolucyjne sieci neuronowe; transformatory wizyjne; rozpoznawanie emocji 
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1. Introduction 

Emotion recognition from facial images has become 

a significant area of interest in the intersection of com-

puter vision, psychology, and artificial intelligence. Un-

derstanding human emotions through automated systems 

enables a wide range of applications, including human-

computer interaction, mental health assessment, and sur-

veillance [1-2]. 

Deep learning techniques, particularly convolutional 

neural networks (CNNs), have demonstrated high effec-

tiveness in visual emotion classification [3]. These archi-

tectures are specifically designed to automatically extract 

relevant visual features from image data with minimal 

preprocessing. The core principle involves the use of 

convolutional layers, which apply learnable filters across 

the input image to detect distinctive patterns such as 

edges, textures, and progressively more complex struc-

tures [4]. CNNs are particularly well-suited for tasks such 

as image classification, object detection, and semantic 

segmentation. Typical CNN architectures consist of 

a series of convolutional and pooling layers that hierar-

chically capture spatial dependencies, followed by fully 

connected layers for final classification. The ability of 

CNNs to learn spatial hierarchies and generalize from 

raw pixel data has made them a dominant approach in 

visual recognition problems across a wide range of do-

mains [5].  

More recently, Vision Transformers (ViTs) – trans-

former-based architectures originally developed for nat-

ural language processing – have emerged as a compelling 

alternative, offering an enhanced ability to capture long-

range dependencies in image data [6-7]. Unlike CNNs, 

which rely on local receptive fields and hierarchical fea-

ture extraction [8], ViTs treat an image as a sequence of 

fixed-size patches and apply self-attention mechanisms 

to model global dependencies between them [9]. ViTs 

have demonstrated competitive performance in image 

classification, especially when trained on large datasets 

[10]. Their ability to capture long-range relationships and 

model contextual information across the entire image 
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makes them well-suited for complex visual tasks. How-

ever, they tend to require more data and computational 

resources compared to CNNs during training [11]. 

These two paradigms represent distinct architectural 

approaches, each with its own strengths and limitations 

in terms of classification accuracy, model complexity, 

and generalization capacity. 

The Facial Expression Recognition 2013 (FER2013) 

dataset, introduced as part of the ICML 2013 Challenges 

in Representation Learning, remains one of the most 

widely used benchmarks for facial emotion recognition 

[12]. Despite its relatively modest image resolution, it 

provides a valuable testing ground for evaluating the ro-

bustness and generalization capabilities of emotion 

recognition models. 

The aim is to identify performance differences be-

tween two deep learning architectures – ResNet-50, 

a well-established convolutional neural network based 

on residual learning [13], and ViT-B/16, a transformer-

based model adapted for image classification – using key 

evaluation metrics such as accuracy, precision, recall, F1-

score, and confusion matrix analysis. Both models were 

independently instantiated and fine-tuned to ensure 

a consistent evaluation. Particular attention was given to 

maintaining equivalent preprocessing steps and data aug-

mentation strategies across architectures. As a result, any 

observed differences in performance can be attributed 

primarily to the model design itself rather than external 

factors. The impact of architectural design on emotion 

recognition effectiveness is assessed, offering insights 

into the selection of suitable models for real-world emo-

tion classification applications. 

2. Related works 

Harnessing the expressive power of deep neural net-

works, contemporary emotion-classification systems are 

beginning to decode the subtle patterns of human feeling 

embedded in speech, text, and facial cues with unprece-

dented accuracy [14-15]. 

Facial expression recognition has been extensively 

studied with deep learning models achieving notable suc-

cess, particularly on benchmark datasets such as 

FER2013 [16]. One of the most commonly applied archi-

tectures is ResNet-50 due to its robust feature extraction 

and transfer learning capabilities.  

Altaha et al. [17] proposed a ResNet-50-based pipe-

line incorporating ArcFace features and a Tiny-Siamese 

network for classification. Designed to reduce memory 

load and training time, the approach achieved 60.43% ac-

curacy on FER2013, illustrating a trade-off between 

computational efficiency and recognition performance.  

Sheng and Lau [18] compared multiple ResNet vari-

ants, including ResNet18, ResNet34, and ResNet-50. 

The ResNet-50 model achieved the highest accuracy in 

their study, attaining 65.40% after fine-tuning. 

Soni et al. [19] evaluated two deep CNN architec-

tures, VGG and ResNet-50 on the FER2013 dataset, ob-

taining accuracies of 50.12% and 52.40%, respectively. 

After adding two dense layers to each architecture, the 

results improved to 55.90% for VGG and 57.20% for 

ResNet-50. By combining both models, they achieved an 

accuracy of 66.15%, demonstrating that ensemble meth-

ods can improve recognition in complex environments.  

Li and Li [20] proposed an architecture integrating 

spatial and frequency domain transformations, using 

ResNet-50 pretrained on VGGFace2 for appearance fea-

tures and combining it with geometric features from 

dense SIFT. Fine-tuned on FER2013 and RAF Basic, the 

ensemble model achieved 66.97% accuracy on the RAF 

Compound set. 

More recently, ViTs have emerged as a strong alter-

native to CNNs in facial expression recognition  tasks. 

Bobojanov et al. [21] performed a comparative analysis 

of multiple ViT architectures, applying dataset cleaning 

and augmentation to reduce class imbalance. Mobile ViT 

emerged as the most effective, achieving 62.73% accu-

racy on FER2013.  

Soni et al. [22] applied a fine-tuned ViT model to the 

FER2013 dataset with extensive preprocessing and aug-

mentation. Their approach achieved an accuracy of 

70.00%, underlining the transformer’s ability to general-
ize across emotional classes.  

Song [23] introduced novel ViT variants (ViTTL and 

ViTEH) that process self-attention outputs through 

global average pooling, improving the detection of local 

patterns. The best variant reached 70.37% accuracy.  

Bie et al. [24] presented Swin-FER, a Swin Trans-

former that fuses middle and deep-layer features while 

controlling parameter growth through mean, split and 

group convolution modules. The model reached 71.11% 

accuracy on FER2013. 

While ResNet-50 remains a strong and widely 

adopted baseline for facial expression recognition, ViT-

based architectures that incorporate hybrid mechanisms 

or architectural refinements have demonstrated consist-

ently competitive and, in some cases, superior perfor-

mance. Reported accuracies for ResNet-50-based models 

on the FER2013 dataset range from 60.43% to 66.97%, 

reflecting the impact of design choices and feature inte-

gration strategies. In comparison, ViT-based approaches 

achieve accuracies from 62.73% to 71.11% (Table 1). 

Table 1: Comparison of the classification accuracies achieved by 

ResNet-50- and ViT-based models across datasets reported in selected 

studies 

Study Model Dataset Accuracy 

[17] ResNet-50 FER2013 60.43% 

[18] ResNet-50 FER2013 65.40% 

[19] ResNet-50 and VGG FER2013 66.15% 

[20] ResNet-50 FER2013 

and 

RAF-DB 

66.97% 

[21] Mobile ViT FER2013 62.73% 

[22] ViT FER2013 70.00% 

[23] ViT FER2013 70.37% 

[24] Swin Transformer FER2013 71.11% 

3. Material and methods 

3.1. ResNet-50 

ResNet-50 (Residual Network, 50 layers) is a convolu-

tional neural network architecture introduced by He et al. 
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in 2016 [25]. It addresses the problem of vanishing gra-

dients in deep networks by introducing residual connec-

tions, which allow the network to learn identity mappings 

and thus preserve gradient flow through many layers.  

The architecture consists of 49 convolutional layers 

and one fully connected layer at the end. The network is 

structured into residual blocks, each containing convolu-

tional layers followed by batch normalization and ReLU 

activation. A key feature of these blocks is the shortcut 

connection, which bypasses one or more layers, allowing 

the model to train deeper networks more effectively. Res-

Net-50 is widely used in image classification tasks due to 

its balance between depth, accuracy, and computational 

efficiency [26]. 

3.2. ViT-B/16 

ViT-B/16 (Vision Transformer Base with a 16×16 input 

patch size) is a Vision Transformer model introduced by 

Dosovitskiy et al. in 2021 [6], which relies on a trans-

former encoder. In ViT-B/16, the input images are first 

resized to 224×224 pixels and partitioned into 196 non-

overlapping 16×16 patches, which are then linearly em-

bedded and combined with positional encodings to retain 

spatial information. A learnable classification token 

([CLS] token) is prepended to serve as a representation 

of an image. 

The resulting 197-token sequence passes through 

a stack of 12 Transformer encoder layers, each compris-

ing 12-head self-attention and a feedforward network that 

expands the 768-dimensional representation to 3072 di-

mensions and then reduces it back to 768, using Gaussian 

Error Linear Unit (GELU) activations. Ultimately, [CLS] 

token is fed into a single linear layer that produces the 

class logits for image classification [9-10]. 

3.3. Facial Expression Recognition 2013 dataset 

Facial Expression Recognition 2013 dataset is one of the 

most widely used benchmarks for training and evaluating 

models in the field of facial emotion recognition. It was 

introduced during the ICML 2013 Challenges in Repre-

sentation Learning and contains a total of 35,887 gray-

scale images, each with a resolution of 48×48 pixels [16]. 

This dataset is divided into three subsets: 28,709 im-

ages for training, 3,589 for validation (public test), and 

3,589 for testing (private test). Each image is labeled with 

one of seven emotion categories: angry, disgust, fear, 

happy, sad, surprise, and neutral (Figure 1).  

 

Figure 1: FER2013 class distribution. 

Despite its relatively low resolution, FER2013 has 

proven effective for benchmarking deep learning models 

due to its size and diversity. 

However, the dataset presents several challenges. The 

class distribution is imbalanced, with certain emotions 

like disgust being significantly underrepresented. More-

over, facial expressions in the images vary in pose, light-

ing, and occlusion (Figure 2), which introduces addi-

tional complexity and requires robust generalization ca-

pabilities from the models [27]. 

 

Figure 2: Example images from the FER2013 dataset [15]. 

3.4. Image augmentation 

To address data imbalance and enhance generalization, 

data augmentation techniques and class-balanced 

weighting were applied [28-29]. The augmentation pipe-

line included random resized cropping, horizontal and 

vertical flips, affine transformations (rotation, transla-

tion, shear), and random erasing. These operations diver-

sify pose, lighting, and partial-occlusion patterns while 

preserving the underlying facial content, providing the 

model with a richer and more balanced training distribu-

tion.  

3.5. Evaluation Metrics 

In order to compare the performance of the evaluated 

emotion recognition models, a set of well-established 

evaluation metrics is utilized. These include accuracy, 

precision, recall, F1-score, and the confusion matrix, 

each providing complementary insights into model be-

havior and effectiveness [30].  

In statistical analysis of classification performance, 

results are summarized in a confusion matrix that records 

how many test samples the model assigns to each out-

come: 

• True Positives (TP) – positive instances classified 

correctly, 

• True Negatives (TN) – negative instances classified 

correctly, 
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• False Positives (FP) – negative instances misclassi-

fied as positive, 

• False Negatives (FN) – positive instances misclassi-

fied as negative. 

An examination of the confusion matrix provides in-

sight into the model’s generalization ability and high-

lights misclassification patterns [31]. The matrix compo-

nents form the basis of evaluation metrics. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1) 

where accuracy expresses the proportion of all images 

that were classified correctly. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (2) 

where precision measures how many of the model’s pos-
itive predictions are actually correct. 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3) 

where recall quantifies the model’s ability to identify all 
positive instances. 𝐹1 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (4) 

where F₁ score is the harmonic mean of precision and re-

call, balancing the trade-off between these two quantities 

and proving especially informative under class-imbal-

ance conditions such as those present in the FER2013 da-

taset [32]. 

4. Results 

The ResNet-50 model, pre-trained on ImageNet [33], 

was fine-tuned [34] on the FER2013 dataset. This model 

was trained for a maximum of 100 epochs with early 

stopping activated; training concluded at epoch 40, se-

lecting the checkpoint with the highest validation score 

[35]. 

During the first ten epochs both training and valida-

tion loss declined rapidly, intersecting at roughly 1.7, af-

ter which the validation curve stabilized (Figure 3). 

 

Figure 3: Training and validation loss over epochs for ResNet-50. 

Validation accuracy increased during the initial train-

ing phase and subsequently plateaued at approximately 

69% (Figure 4). 

 

 Figure 4: Training and validation accuracy over epochs for ResNet-

50. 

The normalized confusion matrix indicates the extent 

to which the model can distinguish individual emotions 

from one another (Figure 5). The diagonal values repre-

sent the recall for each class, whereas the off-diagonal 

entries in a given row show the percentage of that class 

that was misassigned to other labels. Happiness and sur-

prise are the most distinctly recognized emotions, with 

86.70% of happiness images and 83.27% of surprise im-

ages classified correctly, and most of their remaining 

misclassifications are evenly spread across the other five 

classes. 

Conversely, fear emerges as the most challenging 

class, being misclassified most frequently as sadness or 

anger. Some overlap is visible between neutral and sad-

ness as well, reflecting the subtle difference in facial cues 

between these two moods. Disgust, despite having the 

fewest samples in the dataset, achieves a recall of 

65.77%, indicating that the class-balanced loss succeeded 

in preventing systematic neglect of this minority cate-

gory. 

 

Figure 5: Normalized confusion matrix obtained by the ResNet-50 

model on the FER2013 validation set. 

The weighted-averaged F1-score reaches 68.89%, 

confirming that the network retains balanced perfor-

mance despite the pronounced class imbalance. The 

macro-averaged F1-score is 67.13%, indicating that no 

single category dominates the overall performance and 

that the model maintains a comparable level of sensitivity 

across all seven emotions (Table 2). 
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Table 2: Evaluation metrics for the ResNet-50 model on the 

FER2013 dataset 

ResNet-50 Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

angry 60.53 62.11 61.31 

disgust 64.04 65.77 64.89 

fear 58.31 50.39 54.06 

happy 90.26 86.70 88.44 

neutral 60.79 68.29 64.32 

sad 56.35 55.49 55.92 

surprise 78.73 83.27 80.94 

accuracy   68.93 

macro average   67.13 

weighted average   68.89 

The per-class and aggregate metrics confirm that the 

ResNet-50 performs consistently across all classes and 

attains an overall accuracy of 68.93% on FER2013. 

The ViT-B/16 model, initialized with ImageNet 

weights [33], was fine-tuned [34] on FER2013 dataset. 

This model was trained with early-stopping monitor with 

a patience window of twenty epochs, which identified the 

optimal checkpoint at epoch 20, indicating that the trans-

former reached its peak validation performance sooner 

than the convolutional model [35]. Training and valida-

tion loss exhibited a rapid initial decline followed by 

a gradual, monotonic descent (Figure 6).  

 

Figure 6: Training and validation loss over epochs for ViT-B/16. 

Validation accuracy increased progressively to 

a maximum of 71.30%, indicating stable generalization 

throughout training (Figure 7). 

  

Figure 7: Training and validation loss over epochs for ViT-B/16. 

The normalized confusion matrix (Figure 8) provides 

a detailed view of class-level behavior and highlights the 

model’s relative strengths and weaknesses across catego-
ries. The model achieves its highest recall for happiness 

at 88.44% and for surprise at 85.32%, underscoring its 

capacity to capture the distinctive facial patterns associ-

ated with these high-expression emotions. Recall for dis-

gust reaches 72.07%, demonstrating effective learning 

for this minority class despite limited sample availability.  

In contrast, fear remains the most challenging emo-

tion; the majority of its misclassifications are funnelled 

into the anger and sadness classes, indicating that the de-

cision boundary for fear still overlaps most strongly with 

these two negative emotions. Neutral is most frequently 

confused with sadness; 15% of neutral images are pre-

dicted as sadness, underscoring the subtle and subtle and 

ambiguous visual distinction between these two low-in-

tensity expressions. 

 

Figure 8: Normalized confusion matrix obtained by the ViT-B/16 

model on the FER2013 validation set. 

The quantitative evaluation presented in the classifi-

cation report (Table 3) yields a weighted-averaged F1-

score of 71.16% and a macro-averaged F1-score of 

69.82%, confirming that performance is distributed 

across all seven emotions rather than being dominated by 

a subset of categories.  

Table 3: Evaluation metrics for the ViT-B/16 model on the 

FER2013 dataset 

ViT-B/16 Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

angry 60.17 67.01 63.41 

disgust 68.38 72.07 70.18 

fear 65.59 47.66 55.20 

happy 90.54 88.44 89.48 

neutral 66.54 69.99 68.22 

sad 57.07 61.51 59.20 

surprise 80.94 85.32 83.07 

accuracy   71.30 

macro average   69.82 

weighted average   71.16 

ViT-B/16 model fine-tuned on FER2013 achieved an 

overall classification accuracy of 71.30%, supported by 

consistently high scores across precision, recall and F1-

measure. These results confirm that the vision transform-

ers can reliably identify each of the seven basic emotions 

while maintaining stable generalization throughout train-

ing. 
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To better understand the internal mechanisms of both 

models, Grad-CAM visualizations (Figure 9) were em-

ployed to identify which regions of the input images con-

tributed most to the final classification decisions [36]. 

The ResNet-50 model consistently focuses on local-

ized facial regions, particularly the eyes, mouth, and eye-

brows, suggesting its reliance on well-defined facial 

landmarks. In contrast, the ViT-B/16 model exhibits 

more distributed attention patterns, often capturing 

broader contextual features across the entire face. While 

this broader focus may offer resilience to noise or occlu-

sion, it also occasionally results in less concentrated acti-

vation, especially in ambiguous expressions.  

 

Figure 9: Grad-CAM visualizations for selected images from the 

FER2013 dataset, one per emotion category. 

These observations underscore the architectural dis-

tinctions between convolutional and transformer-based 

approaches in facial expression recognition. The contrast 

in activation patterns highlights differing strategies in 

feature prioritization, with ResNet-50 leveraging spatial 

hierarchies and ViT-B/16 capitalizing on global context. 

Such insights are valuable for selecting models in appli-

cations where interpretability, robustness, and sensitivity 

to specific facial cues are critical. 

5. Conclusions 

ResNet-50 and Vision Transformer, both pre-trained on 

ImageNet and fine-tuned on the FER2013 dataset, 

demonstrated strong capabilities in facial emotion recog-

nition. ViT-B/16 achieved the highest validation accu-

racy at 71.30%, slightly outperforming ResNet-50, which 

reached 68.93%, particularly in recognizing emotions 

such as disgust and sadness. In contrast, ResNet-50 

showed more stable behavior across training and gener-

ated clearer, spatially focused Grad-CAM visualizations. 

Despite occasional confusion between ambiguous classes 

like fear and sad, both models showed reliable generali-

zation.  

The complementary strengths of convolutional and 

transformer-based approaches suggest promising direc-

tions for further refinement, particularly in improving 

class-level precision and leveraging hybrid or ensemble 

strategies for enhanced interpretability and robustness in 

real-world emotion recognition tasks. 

It should be noted that both models were assessed 

only on the FER2013 dataset, which is limited to low-

resolution, grayscale images. While FER2013 is a widely 

adopted reference set, its characteristics may not capture 

the full variability encountered in higher-resolution or in-

the-wild scenarios. Extending the evaluation to addi-

tional, more diverse datasets in future work would pro-

vide a broader view of the models’ generalizability. 

Future work may also involve the use of other neural 

network models [37], methods of aggregating classifica-

tion results or ensemble learning [38]. Other methods of 

visualizing results such as SHAP Values [39] are also 

worth considering. 
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