
JCSI 37 (2025) 451–456

Received: 24 June 2025

Accepted: 12 October 2025

451

Performance analysis of the GraphQL API creation technologies using

Spring Boot and NestJS

Jakub Maciej Tkaczyk*, Beata Pańczyk

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

Multitude of requirements for internet applications has led to creation of countless technologies. Goal of this article is

to compare performance of server-side applications providing GraphQL API. Using frameworks NestJS and Spring Boot

applications with the same business logic were created. Applications utilize the same data source - database "airport"

developed for the experiment. In order to verify formulated hypotheses stress test was conducted. Each test set consisted

of following number of requests: 1000, 2000, 4000. Tests showed that NestJS performance exceeds Spring Boot

in GraphQL queries. However, GraphQL mutation results point out opposite.

Keywords: performance analysis; NestJS; Spring Boot; GraphQL

*Corresponding author

Email address: s95595@pollub.edu.pl (J. M.Tkaczyk)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

Web applications are widely used by all groups of people.

Beginning with regular users, they enable easy access

to information and some functionalities. Moreover, they

displace often complicated installation process of desk-

top apps. The intuitive, fast, and reliable applications en-

sures that the end user does not need to be aware of its

internal complexity. Today web applications are often

complex systems that can coordinate operations of the

entire businesses. The multitude of requirements for ap-

plications has given rise to a myriad of technologies, par-

adigms, and system development patterns. However, the

common goal of all solutions is to achieve fast and relia-

ble data exchange between system components as well as

between the applications and the user.

For a long time, applications used the REST (Repre-

sentational State Transfer) standard as a style of client-

server communication. The approach is still valued for its

simplicity, both in development and usage. However,

over the years, a number of disadvantages of this ap-

proach have been revealed. Redundant data transfer and

the need to perform several queries directly affected the

execution time. Additionally, further development of ex-

isting APIs also proved to be problematic. In 2015, Face-

book proposed new solution as an alternative to REST.

GraphQL assumed, that query shape would be defined

not by the server, but by the client. Utilization of DSL

(Domain-specific Language) directly affected the com-

plexity of queries. Tasks requiring multiple REST que-

ries, in GraphQL could be done with a single query,

which shape exactly matches client’s requirements.
Goal of this paper is to test performance of selected

frameworks, that can be used to implement server-side

application, utilizing GraphQL API.

2. Literature review

Comparison of frameworks is rarely done based

on GraphQL. Based on literature review, papers

addressing this task could not be found. However, fol-

lowing articles prove, that GraphQL has features, that can

be useful in software development. Article [1] demon-

strates that REST and GraphQL present similar perfor-

mance in load testing metrics. GraphQL significantly re-

duces the problem of underfetching and overfetching. It

results in the optimalisation of API calls. Additionally,

author conducted a survey, in which respondents say that

popularity of GraphQL is expected to increase over the

next five years. In article [2], researchers conducted

an experiment involving calling equivalent REST and

GraphQL APIs. It turned out, that responses sizes from

GraphQL server were significantly smaller, up to 99%.

Furthermore, by using Client Specific Queries, number

of requests sent to the server can be reduced. Typically,

while solving a task using REST API may take several

queries, the same task can be done with just one GraphQL

query. Authors of article [3] showed, that for simple que-

ries, which returns single values, solutions based on

REST and GraphQL achieved similar response time.

However, for nested GraphQL queries turned out to be

much more efficient.

In article [4] authors compared performance of sev-

eral communication protocols in a system based on mi-

croservice architecture. Experiment included protocols:

gRPC, GraphQL and REST. It was shown that system

based on GraphQL had longest time of request handling,

moreover it presented highest CPU and RAM utilization.

In articles [2, 5] authors point out that developers find

implementing GraphQL API significantly harder than

similar REST API. Article [5] shows, that some of the

most frequently discussed topic on the StackOverflow fo-

rum are challenges of implementation and deployment of

GraphQL servers.

User experience while using existing GraphQL API

is discussed in article [6]. Researchers conducted experi-

ment on students with varying level of experience with

working with API. They were asked to complete several

tasks using REST and GraphQL APIs provided

by GitHub. It turned out, that in general students required

mailto:s95595@pollub.edu.pl

Journal of Computer Sciences Institute 37 (2025) 451-456

452

smaller amount of time while using GraphQL API com-

pared to REST. In later survey, respondents valued other

GraphQL features, including embedded graphical inter-

face, and user-friendly syntax of GraphQL queries.

In summary, GraphQL an alternative style of communi-

cation with the server to REST. It works best in complex

systems, where underfetching and overfetching are sig-

nificant issues. GraphQL can limit both amount of data

received from server and number of queries required

to obtain required data. For smaller systems creation

of GraphQL API required more work, compared

to REST, and GraphQL does not benefit from the perfor-

mance of query handling.

Articles [7-10] value Spring Boot by features other

than request handling speed. In article [7] authors fo-

cused mainly on comparing Spring Boot performance

with ASP.NET. Conducted test shows that Spring Boot

handles queries longer. Authors of article [8] compared

Spring Boot with Express and Django frameworks. After

experiment they state that under load of 8000 virtual us-

ers Spring Boot has the highest request handling speed,

but has significantly more failed request in comparison

to Express. Additionally, authors point out that Spring

Boot has embedded tools supporting software develop-

ment, which is a particular advantage for more experi-

enced developers. Similar conclusions were reached by

authors of paper [9]. They conducted literature review

in order to study developers’ satisfaction, while working
with frameworks: Django, Rails, Spring Boot and

Laravel. A study was carried out, looking at features such

as code generation, developer experience and business

trends. The multi-criteria evaluation placed Spring Boot

in first place ex aequo with Django.

Authors of articles [12, 13] focused on comparing

Spring Boot and Node.JS ecosystems. They both created

application that utilize REST API, with matching busi-

ness logic and tested performance. Authors showed, that

advantage of one tool over another is not straightforward.

In [12] researchers showed that requests in applica-

tion made in Node.JS ecosystem handles request faster

but difference was so small, that authors considered it in-

significant. Paper [13] describes similar comparison, but

authors specify that NodeJS application was imple-

mented using Express framework. They conducted ex-

periment comparing time of executing tasks with differ-

ent complexity. For simple tasks (e.g. logging into appli-

cation) NodeJS application turned out to be a winner.

Spring Boot, on the other hand, performs complex tasks

faster. Thes second part required extensive calculations

and data from multiple database tables.

Utilization of GraphQL API can significantly impact

performance. Results of articles [1, 2, 4] conclude, that

GraphQL major advantage is prevention of underfetching

and overfetching. GraphQL can outperform REST alter-

native in terms of speed. Moreover, it can reduce re-

sponse size by up to 99% [2]. Although simple requests

tend to be executed faster in REST. In [9] authors con-

ducted paper reviews, which proved that Spring Boot

tends to be slower, compared to NodeJS solutions. Au-

thors of [7] reported consistent results with this

statement. Spring Boot application required more time to

process a request than its competitor. Conversely, some

papers indicate the opposite. In article [8] researchers

compared Spring Boot with Express framework. While

they also assumed that Express will be faster, Spring

Boot turned out to be winner. Based on this trend NestJS

was expected to exceed Spring Boot in terms of speed in

all test cases.

Article [11] showed that NestJS outrun other Type-

Script frameworks in stress test. In experiment, for

smaller response data differences was clear. Still, the dif-

ferences narrowed with increasing response size. Author

of [12] compared performance of applications created us-

ing NodeJS and Spring Boot framework. They showed

that although results favour Node.JS application, differ-

ence is negligible. In article [13] there are similar results,

however, authors divide test cases as “light” and “heavy”
operations. Results presented in this paper are most

aligned with findings from performed experiment.

GraphQL query, which is equivalent to method GET

in REST is performed faster in applications created with

NodeJS ecosystem, which includes NestJS. Neverthe-

less, GraphQL mutations, corresponding to other REST

methods, are executed faster in Spring Boot.

Based on literature review, it is possible to conclude,

that direct comparison between NestJS and Spring Boot

has not yet been performed. Furthermore, no comparison

was found between frameworks, where compared appli-

cations used GraphQL API. However, based on other

studies, it is possible to identify some trends in the per-

formance differences between Node.JS and Java solu-

tions.

3. Scope of work and hypotheses

Main objective of this paper is comparison of the NestJS

v11.0.10 and Spring Boot v3.4.0 in terms of performance

of API GraphQL. Created applications will be subjected

to load tests by sending large number of queries. The fol-

lowing hypotheses have been formulated, testing

of which is object of this paper.

H1. Framework NestJS has lower average time of han-

dling simple request, compared to Spring Boot.

H2. GraphQL API created using NestJS handles nested

queries faster than corresponding API implemented

using Spring Boot.

H3. GraphQL mutations are performed faster in NestJS

application that in its Spring Boot counterpart.

4. Materials and methods

Applications were created according to newest guidance

available in documentations at the time of conducting this

study. Implemented APIs have identical features and op-

erate using the same database. Each application was

tested using the same test suite, with different amount

of request sent in given intervals. Results were essential

to determine request handle time for each framework.

4.1. Technologies and tools

In order to verify formulated statements, two applications

with same functionalities were created. Applications

Journal of Computer Sciences Institute 37 (2025) 451-456

453

were subjected to number of load tests. Using Apache

JMeter requests were sent, and response time measured.

• GraphQL – alternative method of data exchange

to REST API. Query language which allows for more

versatile data access – client may define requested

shape of response. It is possible to nest queries, which

usually allows to obtain required data by sending only

one request.

• Apache JMeter – open source tool for performing

load tests of API. It is mainly used for testing the

REST API, but it can be also utilized to test GraphQL.

Application has many available configuration op-

tions, including number of virtual users, time inter-

vals, and tests conditions. It allows for setting up

complex test scenarios and generating reports. The

tool can provide important information on the perfor-

mance or stability of the API.

• NestJS – Node.js framework used for building server-

side applications. It is widely used in full-stack sys-

tems because of possibility to use a single program-

ming language for the entire project. Unlike most of

the Node.js frameworks, it forces codebase structure,

which facilitates teamwork and application scaling.

Developers value it for modular structure, supporting

multiple communication protocols and massive li-

brary resources.

• Spring Boot – framework that simplifies building

Java enterprise applications. It has been used in pro-

fessional systems for years, proving its stability and

scalability. Spring Boot has an extensive ecosystem

with solutions for many development tasks. It has

been on the market much longer than NestJS. How-

ever, Spring Boot is still being developed and used in

projects.

4.2. Test cases

Test cases are divided into three main groups:

• measurement of the execution time of GraphQL

query without nested entities,

• measurement of the execution time of GraphQL

query with nested entities (Listing 1),

• measurement of the execution time of GraphQL mu-

tation.

Each group was tested using varying loads in order to

determine how load affects API performance and stabil-

ity. It was decided to use the following parameters:

• sending 1000 requests in one second,

• sending 2000 requests in one second,

• sending 4000 requests in one second.

GraphQL allow to define exact expected shape of re-

sponse. GraphQL DSL is very similar to JSON language,

which is widely used for communication between web

applications. While sending only one request to the

server, it’s possible to fetch data from multiple related

entities. GraphQL query used for experiment for complex

test set is shown in listing 1. Query is used to obtain data

of flight entities related to selected client. There are ap-

pended other fields which presence may be reasonable in

real application. Each of nested fields is associated with

table from database (see chapter 5.3).

Listing 1: Example of complex GraphQL query

4.3. Test environment

Experiment was performed on computer with Windows

11 installed. Tests were conducted using docker environ-

ment. Each application was built as docker image

and launched alongside separate database instance

in docker compose. Hardware parameters, relevant to the

test, are presented in table 1. Table 2 contains versions

of framework and tools used for experiment

Table 1: Hardware parameters of test platform

Component Parameters

CPU Intel Core i5-12400F

RAM 16GB DDR4

Operating system Windows 11 24H2

Table 2: Versions of software used for the experiment

Software Version

Spring Boot v3.4.0

NestJS v11.0.10

Docker v27.4.0

4.4. Database

In order to test created applications, a database was cre-

ated, the schema of which is shown in Figure 1. The da-

tabase contains data related to flights. Data for the exper-

iment was generated using script which generated set

of random records for each table. It was decided to pop-

ulate database with of approximately 200 000 records

of artificially generated data. Table 3 contains specific

number of rows in every table.

Table 3: Row count of each table

Entity Rows

Client 100000

Ticket 40000

Transaction 40000

Flight 2000

Airport 1000

Journal of Computer Sciences Institute 37 (2025) 451-456

454

Figure 1: Schema of database used for the experiment.

5. Results

In each test case, there were samples that could not be

considered a reasonable response time. These were

marked as errors and filtered out from the dataset. For

each sample, they accounted for approximately 10%.

During load testing it is frequently observed that small

number of requests require an order of magnitude more

time to complete than average. This behaviour typically

results from temporary contention for shared resources,

including CPU time or memory. Additionally, under

heavy load threads or event loop may become blocked by

factors such as time-consuming database queries or inter-

nal garbage collection.

The average execution time for handling request was

used as a comparison criterion. On charts this value

is marked with X symbol. Provided tables contain more

detailed data about each test, in particular number of re-

quests sent (samples), average response time and stand-

ard deviation. Results shown in following subchapters re-

late GraphQL operations, which may find analogy in the

REST standard. Simple query is associated with GET re-

quest in REST. Complex GraphQL query also matches

GET operation, but usually requires multiple requests.

In this paper GraphQL mutation is equivalent to POST

request in REST. Following the charts, there are tables

containing statistical values of the data.

5.1. Simple query

Simple GraphQL query is used to fetch data from one ta-

ble. Results of the first test suite is presented in Figure 2.

Horizontal axis represents number of requests sent in test

and a vertical axis – response time. NestJS finished with

average time 4-7ms which is slightly better than Spring

Boot result: 7-9ms. Table 4 presents statistical data, spe-

cifically average and standard deviation for each test

case.

Table 4: Results of simple query

Framework Samples Average [ms] Std. dev.

NestJS 1000 4.58 0.64

NestJS 2000 5.93 2.31

NestJS 4000 7.84 2.46

Spring Boot 1000 7.13 1.62

Spring Boot 2000 7.61 2.78

Spring Boot 4000 9.40 2.93

Figure 2: Comparison of results for simple GraphQL request.

5.2. Complex query

Complex GraphQL query is used to resolve relations be-

tween entities and obtain data from several database ta-

bles. Figure 3 shows result of this test suite, which again

show that app written using NestJS on average required

less time to complete task. Average request handle time

ranged from 7ms to 11ms for NestJS and 9ms to 13ms

for Spring Boot. Due to more complex task, the average

query handling time increased relative to the previous

test. However, in this test suite differences between re-

sults are lower. Table 5 presents statistical data calculated

for this test suite.

Table 5: Results of complex query

Framework Samples Average [ms] Std. dev.

NestJS 1000 7.17 1.14

NestJS 2000 8.74 2.61

NestJS 4000 11.36 2.88

Spring Boot 1000 9.29 2.66

Spring Boot 2000 10.69 3.93

Spring Boot 4000 12.80 3.63

Figure 3: Comparison of results for complex GraphQL requests.

Journal of Computer Sciences Institute 37 (2025) 451-456

455

5.3. Mutation

In this test suite GraphQL mutation is used as an equiva-

lent of POST method in REST. Comparison shown

in Figure 4 shows different tendency than other test sets.

Although in the previous test suites Spring Boot required

more time to complete task, here results show the oppo-

site. Contrary to hypothesis H3, Spring Boot performs

data insertion faster, in all test cases compared to NestJS.

Table 6 presents statistical data for this test.

Table 6: Results of mutation

Framework Samples Average [ms] Std. dev.

NestJS 1000 8.18 1.24

NestJS 2000 10.07 2.68

NestJS 4000 12.73 2.72

Spring Boot 1000 4.20 0.87

Spring Boot 2000 5.46 2.38

Spring Boot 4000 7.87 2.99

Figure 4: Comparison of results for GraphQL mutations.

6. Results discussion

Results presented in figure 2 confirm that framework

NestJS has lower average time of handling simple re-

quest, compared to Spring Boot (H1). Figure 3 shows re-

sults supporting statement: GraphQL API created using

NestJS handles nested queries faster than corresponding

API implemented using Spring Boot (H2). However, re-

sults from figure 4 contradict hypothesis: GraphQL mu-

tations are performed faster in NestJS application that

in its Spring Boot counterpart (H3).

7. Conclusions

The experiment was conducted in line with designed test

environment. Applications were developed in accord-

ance with the latest standards provided in framework

documentations. The use of docker images facilitated re-

producibility of test environment. Moreover, placing

JMeter in a virtual machine enabled appropriate alloca-

tion of host resources among all component of the exper-

iment. Such setup allowed for reliable repetition of the

experiment. Described test suite was conducted 10 times

and results did not differ significantly from those pre-

sented.

Hypotheses were formulated based on the observed

tendency that the Node.JS API server can run faster that

its Java alternative. Nevertheless, the results of the exper-

iment proved that only some of the postulates were con-

firmed. Hypotheses H1 and H2, which posited that

GraphQL queries are processed faster in Nest.JS com-

pared to Spring Boot, were confirmed. Conversely, state-

ment that GraphQL mutation is handled faster in NestJS

(H3) proved to be false. The rest of the results follow ex-

pected behaviour of application. As the load increases,

so does the response time.

The conducted study provides valuable insights and

opens field for further research in the performance of web

applications. While GraphQL provides numerous bene-

fits, it was not chosen as the leading protocol layer

by other researchers, which motivated conducting such

study. During verification of each hypothesis, the results

clearly pointed to eighter confirmation of rejection.

The partial support for the hypotheses invites a discus-

sion regarding the underlying causes of such results,

along with the classification of operations that favour

a particular tool. Furthermore, future research may be ex-

tended to include wider spectrum of frameworks, data-

bases, and implementation approaches.

References

[1] S. L. Vadlamani, B. Emdon, J. Arts, O. Baysal, Can

GraphQL Replace REST? A Study of Their Efficiency and

Viability, In IEEE/ACM 8th International Workshop on

Software Engineering Research and Industrial Practice

(2021) 10-17,

https://doi.org/10.1109/SER-IP52554.2021.00009.

[2] G. Brito, T. Mombach, M. T. Valente, Migrating to

GraphQL: A Practical Assessment, In IEEE 26th

International Conference on Software Analysis, Evolution

and Reengineering (SANER) (2019) 140-150,

https://doi.org/10.1109/SANER.2019.8667986.

[3] R. Ala-Laurinaho, J. Mattila, J. Autiosalo, J. Hietala, H.

Laaki, K. Tammi, Comparison of REST and GraphQL

Interfaces for OPC UA, Computers 11(5) (2022) 1-17,

https://doi.org/10.3390/computers11050065.

[4] M. Niswar, R. A. Safruddin, A. Bustamin, I. Aswad,

Performance Evaluation of Microservices Communication

with REST, GraphQL, and gRPC, International Journal of

Electronics and Telecommunications 70(2) (2024) 429-

436, https://doi.org/10.24425/ijet.2024.149562.

[5] S. Amareen, O. S. Dector, A. Dado, A. Bosu, GraphQL

Adoption and Challenges: Community-Driven Insights

from StackOverflow Discussions (2024)

arXiv:2408.08363,

https://doi.org/10.48550/arXiv.2408.08363.

[6] G. Brito, M. T. Valente, REST vs GraphQL: A Controlled

Experiment, In IEEE International Conference on

Software Architecture (ICSA) (2020) 81-91,

https://doi.org/10.1109/ICSA47634.2020.00016.

[7] H. K. Dhalla, A Performance Comparison of RESTful

Applications Implemented in Spring Boot Java and

MS.NET Core, Journal of Physics: Conference Series

1933(1) (2021) 1-7, https://doi.org/10.1088/1742-

6596/1933/1/012041.

https://doi.org/10.1109/SER-IP52554.2021.00009
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.3390/computers11050065
https://doi.org/10.24425/ijet.2024.149562
https://doi.org/10.48550/arXiv.2408.08363
https://doi.org/10.1109/ICSA47634.2020.00016
https://doi.org/10.1088/1742-6596/1933/1/012041
https://doi.org/10.1088/1742-6596/1933/1/012041

Journal of Computer Sciences Institute 37 (2025) 451-456

456

[8] D. Choma, K. Chwaleba, M. Dzieńkowski, The efficiency
and reliability of backend technologies: express, Django,

and spring boot, Informatyka, Automatyka, Pomiary

w Gospodarce i Ochronie Środowiska 13(4) (2023) 73-78,

https://doi.org/10.35784/iapgos.4279.

[9] M. Mythily, A. S. A. Raj, I. T. Joseph, An Analysis of the

Significance of Spring Boot in The Market, In

International Conference on Inventive Computation

Technologies (ICICT) (2022) 1277-1281,

https://doi.org/10.1109/ICICT54344.2022.9850910.

[10] M. Kaluža, M. Kalanj, B. Vukelić, A comparison of back-

end frameworks for web application development,

Zbornik Veleučilišta u Rijeci 7(1) (2019) 317-332,

https://doi.org/10.31784/zvr.7.1.10.

[11] M. Golec, M. Plechawska-Wójcik, Comparative analysis
of frameworks using TypeScript to build server

applications, Journal of Computer Sciences Institute 23

(2022) 128-134, https://doi.org/10.35784/jcsi.2910.

[12] I. Buljic, E. Kadusic, T. Cvijanovic, N. Hadzajlic, N.

Zivic, Comparative Performance Analysis of Leading

Backend Frameworks for Developers, In IEEE 24th

International Symposium INFOTEH-JAHORINA

(INFOTEH) (2025) 1-5,

https://doi.org/10.1109/INFOTEH64129.2025.10959250.

[13] O. Novac, D. Ghiurău, M. Novac, C. Gordan, M.
Oproescu, G. Bujdoso, Comparison of Node.Js and Spring

Boot in Web Development, In IEEE 15th International

Conference on Electronics, Computers and Artificial

Intelligence (ECAI) (2023) 1-7,

https://doi.org/10.1109/ECAI58194.2023.10194025.

https://doi.org/10.35784/iapgos.4279
https://doi.org/10.1109/ICICT54344.2022.9850910
https://doi.org/10.31784/zvr.7.1.10
https://doi.org/10.35784/jcsi.2910
https://doi.org/10.1109/INFOTEH64129.2025.10959250
https://doi.org/10.1109/ECAI58194.2023.10194025

