JCSI 37 (2025) 451456
JOU NAL Received: 24 June 2025

COMPUTER SCIENCES INSTITUTE Accepted: 12 October 2025

Performance analysis of the GraphQL API creation technologies using
Spring Boot and NestJS

Jakub Maciej Tkaczyk*, Beata Panczyk
Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

Multitude of requirements for internet applications has led to creation of countless technologies. Goal of this article is
to compare performance of server-side applications providing GraphQL API. Using frameworks NestJS and Spring Boot
applications with the same business logic were created. Applications utilize the same data source - database "airport"
developed for the experiment. In order to verify formulated hypotheses stress test was conducted. Each test set consisted
of following number of requests: 1000, 2000, 4000. Tests showed that NestJS performance exceeds Spring Boot
in GraphQL queries. However, GraphQL mutation results point out opposite.

Keywords: performance analysis; NestJS; Spring Boot; GraphQL

"Corresponding author
Email address: $95595@pollub.edu.pl (J. M.Tkaczyk)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction addressing this task could not be found. However, fol-
lowing articles prove, that GraphQL has features, that can
be useful in software development. Article [1] demon-
strates that REST and GraphQL present similar perfor-
mance in load testing metrics. GraphQL significantly re-
duces the problem of underfetching and overfetching. It
results in the optimalisation of API calls. Additionally,
author conducted a survey, in which respondents say that
popularity of GraphQL is expected to increase over the
next five years. In article [2], researchers conducted
an experiment involving calling equivalent REST and
GraphQL APIs. It turned out, that responses sizes from
GraphQL server were significantly smaller, up to 99%.
Furthermore, by using Client Specific Queries, number
of requests sent to the server can be reduced. Typically,
while solving a task using REST API may take several
queries, the same task can be done with just one GraphQL
query. Authors of article [3] showed, that for simple que-
ries, which returns single values, solutions based on
REST and GraphQL achieved similar response time.
However, for nested GraphQL queries turned out to be
much more efficient.

In article [4] authors compared performance of sev-
eral communication protocols in a system based on mi-
croservice architecture. Experiment included protocols:
gRPC, GraphQL and REST. It was shown that system
based on GraphQL had longest time of request handling,
moreover it presented highest CPU and RAM utilization.
In articles [2, 5] authors point out that developers find
implementing GraphQL API significantly harder than
similar REST API. Article [5] shows, that some of the
most frequently discussed topic on the StackOverflow fo-
rum are challenges of implementation and deployment of
GraphQL servers.

User experience while using existing GraphQL API
is discussed in article [6]. Researchers conducted experi-

Web applications are widely used by all groups of people.
Beginning with regular users, they enable easy access
to information and some functionalities. Moreover, they
displace often complicated installation process of desk-
top apps. The intuitive, fast, and reliable applications en-
sures that the end user does not need to be aware of its
internal complexity. Today web applications are often
complex systems that can coordinate operations of the
entire businesses. The multitude of requirements for ap-
plications has given rise to a myriad of technologies, par-
adigms, and system development patterns. However, the
common goal of all solutions is to achieve fast and relia-
ble data exchange between system components as well as
between the applications and the user.

For a long time, applications used the REST (Repre-
sentational State Transfer) standard as a style of client-
server communication. The approach is still valued for its
simplicity, both in development and usage. However,
over the years, a number of disadvantages of this ap-
proach have been revealed. Redundant data transfer and
the need to perform several queries directly affected the
execution time. Additionally, further development of ex-
isting APIs also proved to be problematic. In 2015, Face-
book proposed new solution as an alternative to REST.
GraphQL assumed, that query shape would be defined
not by the server, but by the client. Utilization of DSL
(Domain-specific Language) directly affected the com-
plexity of queries. Tasks requiring multiple REST que-
ries, in GraphQL could be done with a single query,
which shape exactly matches client’s requirements.

Goal of this paper is to test performance of selected
frameworks, that can be used to implement server-side
application, utilizing GraphQL API.

2. Literature review ment on students with varying level of experience with
C . £ g ks i v d based working with API. They were asked to complete several
omparison ol amEwWorks 15 rarcly cone base tasks using REST and GraphQL APIs provided

on GraphQL. Based on literature review, papers by GitHub. It turned out, that in general students required

451

mailto:s95595@pollub.edu.pl

Journal of Computer Sciences Institute

37 (2025) 451-456

smaller amount of time while using GraphQL API com-
pared to REST. In later survey, respondents valued other
GraphQL features, including embedded graphical inter-
face, and user-friendly syntax of GraphQL queries.
In summary, GraphQL an alternative style of communi-
cation with the server to REST. It works best in complex
systems, where underfetching and overfetching are sig-
nificant issues. GraphQL can limit both amount of data
received from server and number of queries required
to obtain required data. For smaller systems creation
of GraphQL API required more work, compared
to REST, and GraphQL does not benefit from the perfor-
mance of query handling.

Articles [7-10] value Spring Boot by features other
than request handling speed. In article [7] authors fo-
cused mainly on comparing Spring Boot performance
with ASP.NET. Conducted test shows that Spring Boot
handles queries longer. Authors of article [8] compared
Spring Boot with Express and Django frameworks. After
experiment they state that under load of 8000 virtual us-
ers Spring Boot has the highest request handling speed,
but has significantly more failed request in comparison
to Express. Additionally, authors point out that Spring
Boot has embedded tools supporting software develop-
ment, which is a particular advantage for more experi-
enced developers. Similar conclusions were reached by
authors of paper [9]. They conducted literature review
in order to study developers’ satisfaction, while working
with frameworks: Django, Rails, Spring Boot and
Laravel. A study was carried out, looking at features such
as code generation, developer experience and business
trends. The multi-criteria evaluation placed Spring Boot
in first place ex aequo with Django.

Authors of articles [12, 13] focused on comparing
Spring Boot and Node.JS ecosystems. They both created
application that utilize REST API, with matching busi-
ness logic and tested performance. Authors showed, that
advantage of one tool over another is not straightforward.

In [12] researchers showed that requests in applica-
tion made in Node.JS ecosystem handles request faster
but difference was so small, that authors considered it in-
significant. Paper [13] describes similar comparison, but
authors specify that NodelS application was imple-
mented using Express framework. They conducted ex-
periment comparing time of executing tasks with differ-
ent complexity. For simple tasks (e.g. logging into appli-
cation) NodeJS application turned out to be a winner.
Spring Boot, on the other hand, performs complex tasks
faster. Thes second part required extensive calculations
and data from multiple database tables.

Utilization of GraphQL API can significantly impact
performance. Results of articles [1, 2, 4] conclude, that
GraphQL major advantage is prevention of underfetching
and overfetching. GraphQL can outperform REST alter-
native in terms of speed. Moreover, it can reduce re-
sponse size by up to 99% [2]. Although simple requests
tend to be executed faster in REST. In [9] authors con-
ducted paper reviews, which proved that Spring Boot
tends to be slower, compared to NodelS solutions. Au-
thors of [7] reported consistent results with this

statement. Spring Boot application required more time to
process a request than its competitor. Conversely, some
papers indicate the opposite. In article [8] researchers
compared Spring Boot with Express framework. While
they also assumed that Express will be faster, Spring
Boot turned out to be winner. Based on this trend NestJS
was expected to exceed Spring Boot in terms of speed in
all test cases.

Article [11] showed that NestJS outrun other Type-
Script frameworks in stress test. In experiment, for
smaller response data differences was clear. Still, the dif-
ferences narrowed with increasing response size. Author
of [12] compared performance of applications created us-
ing NodeJS and Spring Boot framework. They showed
that although results favour Node.JS application, differ-
ence is negligible. In article [13] there are similar results,
however, authors divide test cases as “light” and “heavy”
operations. Results presented in this paper are most
aligned with findings from performed experiment.
GraphQL query, which is equivalent to method GET
in REST is performed faster in applications created with
NodelS ecosystem, which includes Nest]S. Neverthe-
less, GraphQL mutations, corresponding to other REST
methods, are executed faster in Spring Boot.

Based on literature review, it is possible to conclude,
that direct comparison between NestJS and Spring Boot
has not yet been performed. Furthermore, no comparison
was found between frameworks, where compared appli-
cations used GraphQL API. However, based on other
studies, it is possible to identify some trends in the per-
formance differences between Node.JS and Java solu-
tions.

3. Scope of work and hypotheses

Main objective of this paper is comparison of the NestJS
v11.0.10 and Spring Boot v3.4.0 in terms of performance
of API GraphQL. Created applications will be subjected
to load tests by sending large number of queries. The fol-
lowing hypotheses have been formulated, testing
of which is object of this paper.

H1. Framework NestJS has lower average time of han-
dling simple request, compared to Spring Boot.

H2. GraphQL API created using NestJS handles nested
queries faster than corresponding API implemented
using Spring Boot.

H3. GraphQL mutations are performed faster in NestJS
application that in its Spring Boot counterpart.

4. Materials and methods

Applications were created according to newest guidance
available in documentations at the time of conducting this
study. Implemented APIs have identical features and op-
erate using the same database. Each application was
tested using the same test suite, with different amount
of request sent in given intervals. Results were essential
to determine request handle time for each framework.

4.1. Technologies and tools

In order to verify formulated statements, two applications
with same functionalities were created. Applications

452

Journal of Computer Sciences Institute

37 (2025) 451-456

were subjected to number of load tests. Using Apache

JMeter requests were sent, and response time measured.

e GraphQL - alternative method of data exchange
to REST API. Query language which allows for more
versatile data access — client may define requested
shape of response. It is possible to nest queries, which
usually allows to obtain required data by sending only
one request.

e Apache JMeter — open source tool for performing
load tests of APIL It is mainly used for testing the
REST API, but it can be also utilized to test GraphQL.
Application has many available configuration op-
tions, including number of virtual users, time inter-
vals, and tests conditions. It allows for setting up
complex test scenarios and generating reports. The
tool can provide important information on the perfor-
mance or stability of the API.

e NestJS —Node.js framework used for building server-
side applications. It is widely used in full-stack sys-
tems because of possibility to use a single program-
ming language for the entire project. Unlike most of
the Node.js frameworks, it forces codebase structure,
which facilitates teamwork and application scaling.
Developers value it for modular structure, supporting
multiple communication protocols and massive li-
brary resources.

e Spring Boot — framework that simplifies building
Java enterprise applications. It has been used in pro-
fessional systems for years, proving its stability and
scalability. Spring Boot has an extensive ecosystem
with solutions for many development tasks. It has
been on the market much longer than NestJS. How-
ever, Spring Boot is still being developed and used in
projects.

4.2. Test cases

Test cases are divided into three main groups:

e measurement of the execution time of GraphQL
query without nested entities,

e measurement of the execution time of GraphQL

query with nested entities (Listing 1),

e measurement of the execution time of GraphQL mu-
tation.

Each group was tested using varying loads in order to
determine how load affects API performance and stabil-
ity. It was decided to use the following parameters:

e sending 1000 requests in one second,
e sending 2000 requests in one second,
e sending 4000 requests in one second.

GraphQL allow to define exact expected shape of re-
sponse. GraphQL DSL is very similar to JSON language,
which is widely used for communication between web
applications. While sending only one request to the
server, it’s possible to fetch data from multiple related
entities. GraphQL query used for experiment for complex
test set is shown in listing 1. Query is used to obtain data
of flight entities related to selected client. There are ap-
pended other fields which presence may be reasonable in
real application. Each of nested fields is associated with
table from database (see chapter 5.3).

Listing 1: Example of complex GraphQL query

1 query GET_FLIGHT_DATA($client_id: ID!) {
2 client(id: $client_id) {
3 id

4 firstname

5 lastname

6 email

7 tickets {

8 id

9 flight {

1e id

11 airportFrom {

12 code

13 }

14 airportTo {

15 code

16 }

17 }

18 }

19 }

20}

4.3. Test environment

Experiment was performed on computer with Windows
11 installed. Tests were conducted using docker environ-
ment. Each application was built as docker image
and launched alongside separate database instance
in docker compose. Hardware parameters, relevant to the
test, are presented in table 1. Table 2 contains versions
of framework and tools used for experiment

Table 1: Hardware parameters of test platform

Component Parameters
CPU Intel Core i5-12400F
RAM 16GB DDR4

Operating system Windows 11 24H2

Table 2: Versions of software used for the experiment

Software Version
Spring Boot v3.4.0

NestJS v11.0.10
Docker v27.4.0

4.4. Database

In order to test created applications, a database was cre-
ated, the schema of which is shown in Figure 1. The da-
tabase contains data related to flights. Data for the exper-
iment was generated using script which generated set
of random records for each table. It was decided to pop-
ulate database with of approximately 200 000 records
of artificially generated data. Table 3 contains specific
number of rows in every table.

Table 3: Row count of each table

Entity Rows
Client 100000
Ticket 40000
Transaction 40000
Flight 2000
Airport 1000

Journal of Computer Sciences Institute

37 (2025) 451-456

] transaction ¥

] ticket v
- id INT
id INT
price DECIMAL(10,2)
®dientdvt |, M 5 paid TIVINT(D)
seat VARCHAR(10)
- flight_class VARCHAR(10)
} flight_id INT ——= d
} & transaction_id INT }
~J flight X I > }
id INT } |
airport_from INT !
port_ — |] dient L/
?
airport_to INT } id INT
date DATE } firstname VARCHAR(255)
. e Bt
estimated_time DECIMAL(S,2) lastname VARCHAR(255)
@ ticket_id INT = ai = email VARCHAR(255)
ai
» irport »

code VARCHAR(10)
continent VARCHAR(50)

|
|
|
|
v | id INT
i |
I L
|
} country VARCHAR(S0)
|

city VARCHAR(255)
longitude DECIMAL(10,6)
latitude DECIMAL(10,6)

>

Figure 1: Schema of database used for the experiment.
5. Results

In each test case, there were samples that could not be
considered a reasonable response time. These were
marked as errors and filtered out from the dataset. For
each sample, they accounted for approximately 10%.
During load testing it is frequently observed that small
number of requests require an order of magnitude more
time to complete than average. This behaviour typically
results from temporary contention for shared resources,
including CPU time or memory. Additionally, under
heavy load threads or event loop may become blocked by
factors such as time-consuming database queries or inter-
nal garbage collection.

The average execution time for handling request was
used as a comparison criterion. On charts this value
is marked with X symbol. Provided tables contain more
detailed data about each test, in particular number of re-
quests sent (samples), average response time and stand-
ard deviation. Results shown in following subchapters re-
late GraphQL operations, which may find analogy in the
REST standard. Simple query is associated with GET re-
quest in REST. Complex GraphQL query also matches
GET operation, but usually requires multiple requests.
In this paper GraphQL mutation is equivalent to POST
request in REST. Following the charts, there are tables
containing statistical values of the data.

5.1. Simple query

Simple GraphQL query is used to fetch data from one ta-
ble. Results of the first test suite is presented in Figure 2.
Horizontal axis represents number of requests sent in test
and a vertical axis — response time. NestJS finished with
average time 4-7ms which is slightly better than Spring
Boot result: 7-9ms. Table 4 presents statistical data, spe-
cifically average and standard deviation for each test
case.

Table 4: Results of simple query

Framework Samples Average [ms] Std. dev.
NestJS 1000 4.58 0.64
NestJS 2000 5.93 2.31
NestJS 4000 7.84 2.46

Spring Boot 1000 7.13 1.62
Spring Boot 2000 7.61 2.78
Spring Boot 4000 9.40 2.93
30
I nest
[spring

~
S

Request handle time (ms)
s =

| ——

1000

2000 4000

Samples

Figure 2: Comparison of results for simple GraphQL request.
5.2. Complex query

Complex GraphQL query is used to resolve relations be-
tween entities and obtain data from several database ta-
bles. Figure 3 shows result of this test suite, which again
show that app written using NestJS on average required
less time to complete task. Average request handle time
ranged from 7ms to 11ms for NestJS and 9ms to 13ms
for Spring Boot. Due to more complex task, the average
query handling time increased relative to the previous
test. However, in this test suite differences between re-
sults are lower. Table 5 presents statistical data calculated
for this test suite.

Table 5: Results of complex query

Framework Samples Average [ms] Std. dev.
NestJS 1000 7.17 1.14
NestJS 2000 8.74 2.61
NestJS 4000 11.36 2.88

Spring Boot 1000 9.29 2.66

Spring Boot 2000 10.69 3.93

Spring Boot 4000 12.80 3.63

30
N nest
@ spring
25
E 20
[
£
% 15 4
% 10 A
&
5
o v T v
1000 2000 4000
Samples

Figure 3. Comparison of results for complex GraphQL requests.

454

Journal of Computer Sciences Institute

37 (2025) 451-456

5.3. Mutation

In this test suite GraphQL mutation is used as an equiva-
lent of POST method in REST. Comparison shown
in Figure 4 shows different tendency than other test sets.
Although in the previous test suites Spring Boot required
more time to complete task, here results show the oppo-
site. Contrary to hypothesis H3, Spring Boot performs
data insertion faster, in all test cases compared to NestJS.
Table 6 presents statistical data for this test.

Table 6: Results of mutation

Framework Samples Average [ms] Std. dev.
NestJS 1000 8.18 1.24
NestJS 2000 10.07 2.68
NestJS 4000 12.73 2.72

Spring Boot 1000 4.20 0.87

Spring Boot 2000 5.46 2.38

Spring Boot 4000 7.87 2.99

30
N nest
@ spring
25
E 20 4
@
£
% 15
i ;
2 10 { T
g
5
e
) v v T
1000 2000 4000
Samples

Figure 4: Comparison of results for GraphQL mutations.
6. Results discussion

Results presented in figure 2 confirm that framework
NestJS has lower average time of handling simple re-
quest, compared to Spring Boot (H1). Figure 3 shows re-
sults supporting statement: GraphQL API created using
NestJS handles nested queries faster than corresponding
API implemented using Spring Boot (H2). However, re-
sults from figure 4 contradict hypothesis: GraphQL mu-
tations are performed faster in NestJS application that
in its Spring Boot counterpart (H3).

7. Conclusions

The experiment was conducted in line with designed test
environment. Applications were developed in accord-
ance with the latest standards provided in framework
documentations. The use of docker images facilitated re-
producibility of test environment. Moreover, placing
JMeter in a virtual machine enabled appropriate alloca-
tion of host resources among all component of the exper-
iment. Such setup allowed for reliable repetition of the
experiment. Described test suite was conducted 10 times
and results did not differ significantly from those pre-
sented.

Hypotheses were formulated based on the observed
tendency that the Node.JS API server can run faster that
its Java alternative. Nevertheless, the results of the exper-
iment proved that only some of the postulates were con-
firmed. Hypotheses H1 and H2, which posited that
GraphQL queries are processed faster in Nest.JS com-
pared to Spring Boot, were confirmed. Conversely, state-
ment that GraphQL mutation is handled faster in NestJS
(H3) proved to be false. The rest of the results follow ex-
pected behaviour of application. As the load increases,
so does the response time.

The conducted study provides valuable insights and
opens field for further research in the performance of web
applications. While GraphQL provides numerous bene-
fits, it was not chosen as the leading protocol layer
by other researchers, which motivated conducting such
study. During verification of each hypothesis, the results
clearly pointed to eighter confirmation of rejection.
The partial support for the hypotheses invites a discus-
sion regarding the underlying causes of such results,
along with the classification of operations that favour
a particular tool. Furthermore, future research may be ex-
tended to include wider spectrum of frameworks, data-
bases, and implementation approaches.

References

[11 S. L. Vadlamani, B. Emdon, J. Arts, O. Baysal, Can
GraphQL Replace REST? A Study of Their Efficiency and
Viability, In IEEE/ACM 8th International Workshop on
Software Engineering Research and Industrial Practice
(2021) 10-17,
https://doi.org/10.1109/SER-IP52554.2021.00009.

G. Brito, T. Mombach, M. T. Valente, Migrating to
GraphQL: A Practical Assessment, In IEEE 26th
International Conference on Software Analysis, Evolution
and Reengineering (SANER) (2019) 140-150,
https://doi.org/10.1109/SANER.2019.8667986.

R. Ala-Laurinaho, J. Mattila, J. Autiosalo, J. Hietala, H.
Laaki, K. Tammi, Comparison of REST and GraphQL
Interfaces for OPC UA, Computers 11(5) (2022) 1-17,
https://doi.org/10.3390/computers11050065.

M. Niswar, R. A. Safruddin, A. Bustamin, I. Aswad,
Performance Evaluation of Microservices Communication
with REST, GraphQL, and gRPC, International Journal of
Electronics and Telecommunications 70(2) (2024) 429-
436, https://doi.org/10.24425/ijet.2024.149562.

[51 S. Amareen, O. S. Dector, A. Dado, A. Bosu, GraphQL
Adoption and Challenges: Community-Driven Insights
from StackOverflow Discussions (2024)
arXiv:2408.08363,

https://doi.org/10.48550/arXiv.2408.08363.

G. Brito, M. T. Valente, REST vs GraphQL: A Controlled
Experiment, In IEEE International Conference on
Software Architecture ~ (ICSA) (2020) 81-91,
https://doi.org/10.1109/ICSA47634.2020.00016.

H. K. Dhalla, A Performance Comparison of RESTful
Applications Implemented in Spring Boot Java and
MS.NET Core, Journal of Physics: Conference Series
1933(1) (2021) 1-7, https://doi.org/10.1088/1742-
6596/1933/1/012041.

455

https://doi.org/10.1109/SER-IP52554.2021.00009
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.3390/computers11050065
https://doi.org/10.24425/ijet.2024.149562
https://doi.org/10.48550/arXiv.2408.08363
https://doi.org/10.1109/ICSA47634.2020.00016
https://doi.org/10.1088/1742-6596/1933/1/012041
https://doi.org/10.1088/1742-6596/1933/1/012041

Journal of Computer Sciences Institute

37 (2025) 451-456

(8]

(9]

[10]

D. Choma, K. Chwaleba, M. Dzienkowski, The efficiency
and reliability of backend technologies: express, Django,
and spring boot, Informatyka, Automatyka, Pomiary
w Gospodarce i Ochronie Srodowiska 13(4) (2023) 73-78,
https://doi.org/10.35784/iapgos.4279.

M. Mythily, A. S. A. Raj, I. T. Joseph, An Analysis of the
Significance of Spring Boot in The Market, In
International Conference on Inventive Computation
Technologies (ICICT) (2022) 1277-1281,
https://doi.org/10.1109/ICICT54344.2022.9850910.

M. Kaluza, M. Kalanj, B. Vukeli¢, A comparison of back-
end frameworks for web application development,
Zbornik Veleudilista u Rijeci 7(1) (2019) 317-332,
https://doi.org/10.31784/zvr.7.1.10.

[11]

[12]

[13]

M. Golec, M. Plechawska-Wojcik, Comparative analysis
of frameworks using TypeScript to build server
applications, Journal of Computer Sciences Institute 23
(2022) 128-134, https://doi.org/10.35784/jcs1.2910.

I. Buljic, E. Kadusic, T. Cvijanovic, N. Hadzajlic, N.
Zivic, Comparative Performance Analysis of Leading
Backend Frameworks for Developers, In IEEE 24th
International Symposium INFOTEH-JAHORINA
(INFOTEH) (2025) 1-5,

https://doi.org/10.1109/INFOTEH64129.2025.10959250.

0. Novac, D. Ghiurau, M. Novac, C. Gordan, M.
Oproescu, G. Bujdoso, Comparison of Node.Js and Spring
Boot in Web Development, In IEEE 15th International
Conference on Electronics, Computers and Artificial
Intelligence (ECAI) (2023) 1-7,
https://doi.org/10.1109/ECAI58194.2023.10194025.

456

https://doi.org/10.35784/iapgos.4279
https://doi.org/10.1109/ICICT54344.2022.9850910
https://doi.org/10.31784/zvr.7.1.10
https://doi.org/10.35784/jcsi.2910
https://doi.org/10.1109/INFOTEH64129.2025.10959250
https://doi.org/10.1109/ECAI58194.2023.10194025

