
JCSI 37 (2025) 457–462

Received: 24 June 2025

Accepted: 20 September 2025

457

Comparative Performance Analysis of RabbitMQ and Kafka Message

Queue Systems in Spring Boot and ASP.NET Environments

Analiza porównawcza wydajności systemów kolejkowych RabbitMQ
i Kafka w środowiskach Spring Boot i ASP.NET

Filip Kamiński*, Radosław Kłonica, Beata Pańczyk

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The article analyzes and compares the performance of Kafka 4.0 and RabbitMQ 4.1 in applications built with Spring

(Kotlin) and .NET. Given the growing importance of microservices and event-driven architectures, the research examines

message throughput, resource consumption, and stability under different loads. Two applications were developed to meas-

ure performance in terms of processing speed, CPU, and memory usage. The study also explores architectural consider-

ations and factors affecting performance. The findings offer insights into when each system is most suitable, helping

developers make informed decisions based on project requirements. The results show that Kafka performs better in .NET

environments with up to 38% higher throughput and 40% lower latency while RabbitMQ is more efficient in Spring Boot

setups, using nearly 29% less memory and delivering responses 25% faster.

Keywords: Apache Kafka; RabbitMQ; .NET; Spring Boot

Streszczenie

Artykuł naukowy analizuje i porównuje wydajność systemów kolejkowych Kafka i RabbitMQ w aplikacjach Spring Boot

(Kotlin) oraz .NET (C#). Celem jest ocena szybkości przetwarzania wiadomości, zużycia zasobów i stabilności w różnych
scenariuszach obciążenia. Badania przeprowadzono za pomocą dwóch aplikacji, każda korzystała z obu systemów kolej-
kowych. Praca uwzględnia również aspekty architektoniczne i czynniki wpływające na wydajność. Wyniki dostarczają
rekomendacji dotyczących wyboru odpowiedniego narzędzia w zależności od środowiska I wymagań projektu. Wyniki

pokazują, że Kafka działa lepiej w środowiskach .NET, podczas gdy RabbitMQ jest bardziej efektywny w środowiskach
Spring Boot o ograniczonych zasobach. Wyniki pokazują, że Kafka działa lepiej w środowisku .NET osiągając do 38%
wyższą przepustowość i 40% niższe opóźnienie, natomiast RabbitMQ jest bardziej efektywny w środowisku Spring Boot,
zużywając prawie 29% mniej pamięci i dostarczając odpowiedzi o 25% szybciej.
Słowa kluczowe: Apache Kafka; RabbitMQ; .NET; Spring Boot

*Corresponding author

Email address: s95249@pollub.edu.pl (F. Kamiński)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

In the era of rapid technological development and the

growing popularity of distributed and microservices ar-

chitectures, efficient information exchange between sys-

tem components is crucial. Message queue systems, ena-

bling asynchronous communication while ensuring con-

sistency, scalability, and flexibility, play a key role in

such architectures. Kafka [1] and RabbitMQ [2], two of

the most popular message queue systems, differ in archi-

tecture and adaptability to various application require-

ments, making them interesting subjects for performance

analysis and comparison across different environments.

The primary goal of this article is to evaluate the per-

formance of Kafka and RabbitMQ using two applications

one developed in Spring with Kotlin [3] and the other in

.NET [4]. The study analyzes message processing speed,

system resource efficiency, and stability under various

load scenarios. Selecting the right message queue system

often challenges developers and engineers to align the

tool with specific project and operational requirements.

This research seeks to determine which system performs

better under certain conditions and provides valuable

insights for future projects utilizing message queue archi-

tectures.

Through detailed comparative analysis and evalua-

tion of experimental results, the article offers a compre-

hensive overview of Kafka and RabbitMQ performance

across different technological environments and config-

urations. It also provides recommendations for their prac-

tical application in production systems. Through detailed

comparative analysis and evaluation of experimental re-

sults, the article offers a comprehensive overview of

Kafka and RabbitMQ performance across different tech-

nological environments and configurations. It also pro-

vides recommendations for their practical application in

production systems. The originality of this study lies in

the parallel analysis of both message brokers across two

distinct platforms, offering unique cross-environment in-

sights not commonly addressed in existing literature.

2. Related works

Henning and Hasselbring (2024) [5] conducted an exten-

sive benchmarking study focused on the scalability of

modern stream processing frameworks deployed in

mailto:s95249@pollub.edu.pl

Journal of Computer Sciences Institute 37 (2025) 457-462

458

microservices architectures in the cloud. Their research,

spanning over 740 hours of experiments, evaluated five

popular frameworks - Apache Flink, Kafka Streams,

Apache Samza, Hazelcast Jet, and Apache Beam - by an-

alyzing their efficiency in processing up to one million

messages per second in cloud environments. The findings

confirmed that all tested frameworks exhibited linear

scalability; however, their resource consumption varied

significantly under increased loads. This article provides

valuable context for our comparative analysis of Rab-

bitMQ and Apache Kafka, especially highlighting

Kafka’s advantages as a foundational element in scalable
microservices and high-throughput streaming systems.

Lercher et al. (2024) [6] focused on real-world strat-

egies and challenges related to API evolution in micro-

services-based architectures. Based on 17 interviews

with practitioners from 11 companies, the authors identi-

fied six major strategies and six key challenges associ-

ated with evolving REST APIs and event-driven commu-

nication through message brokers such as RabbitMQ and

Kafka. Strategies included backward compatibility

maintenance, API versioning, and tight inter-team collab-

oration. Key challenges were difficulties in impact anal-

ysis, inefficient team communication, and client depend-

ency on outdated API versions. The article emphasizes

the importance of automated impact analysis and com-

munication efficiency as directions for future research. In

the context of our study, it confirms the growing signifi-

cance of message brokers in modern software architec-

tures and their influence on the design and evolution of

APIs.

Pathak and Kalaiarasan (2021) [7] presented an in-

depth analysis of RabbitMQ’s queuing mechanisms in
publish-subscribe models, with particular emphasis on

applications in the Internet of Things (IoT). The paper

discusses RabbitMQ’s strengths in scalability, reliability,
and availability in distributed systems. It explores various

communication models (request-response, push-pull, ex-

clusive pair) and internal architecture components such

as exchanges and queues. Special attention is given to

queue overload issues, message loss, time-to-live (TTL)

mechanisms, and the impact of message size and con-

sumer count on system performance. Experimental re-

sults showed that while RabbitMQ is effective for mes-

sage communication, high-load environments may re-

quire additional optimizations such as sub-exchanges to

improve throughput and reduce congestion. This study

contributes critical insights into the internal behavior of

RabbitMQ and its performance under varying queuing

configurations.

The reviewed studies highlight the increasing im-

portance of message queue systems such as Apache

Kafka and RabbitMQ in the context of modern, distrib-

uted, and event-driven architectures. They collectively

emphasize the need for scalability, resilience, and effi-

cient API evolution when designing microservice-based

systems. Kafka emerges as a highly scalable and re-

source-efficient platform suitable for high-throughput

scenarios, particularly in data-intensive cloud environ-

ments. RabbitMQ, in contrast, offers strong reliability

and flexibility, especially in IoT and real-time communi-

cation scenarios where control over delivery and queuing

mechanisms is essential. Moreover, the integration of

both brokers with enterprise applications requires careful

consideration of architectural patterns, system load char-

acteristics, and developer tooling. These insights rein-

force the relevance of conducting performance compari-

sons in diverse runtime environments, such as Spring

Boot and ASP.NET, to inform practical design decisions.

3. Description of the tested applications

This section presents the implementation of the analyzed

system using two popular technology stacks. The first is

C# with the ASP.NET framework, which is designed for

building web applications and services. The second is

Kotlin with Spring Boot, which offers a secure and effi-

cient environment for the Java Virtual Machine (JVM).

3.1. RabbitMQ in ASP.NET

In the ASP.NET implementation of RabbitMQ 4.1, the

system consists of several key components. Controllers

manage incoming HTTP requests, with examples includ-

ing AuctionsController.cs, CityController.cs, and Image-

Controller.cs. The Data layer defines the database con-

text using Entity Framework Core, while Dtos (Data

Transfer Objects) simplify data transfer between layers.

Repositories and Interfaces handle data access, enabling

dependency injection for greater modularity. Services,

such as AuctionProducerService.cs for publishing mes-

sages and AuctionConsumerService.cs for consuming

them, are responsible for RabbitMQ 4.1 integration. The

system's workflow begins when a controller receives

a request and invokes the AuctionProducerService,

which publishes serialized auction data to RabbitMQ.

Simultaneously, the AuctionConsumerService listens for

incoming messages, processes them such as saving data

to the database and manages acknowledgments to ensure

message reliability [7]. This architecture supports asyn-

chronous, scalable, and resilient communication.

3.2. Apache Kafka in ASP.NET

The Kafka 4.0 implementation in ASP.NET follows

a similar structure but is divided into two primary com-

ponents: Producer, which publishes auction-related mes-

sages, and Consumer, which processes inventory up-

dates. Controllers manage auction and inventory opera-

tions, while the data layer handles database contexts.

Dtos, Repositories, and Interfaces organize data flow and

access logic. The services layer includes ProducerServ-

ice.cs for publishing and ConsumerService.cs for con-

suming Kafka messages. The system flow starts when

auctions are published to Kafka topics via the Produc-

erService. The ConsumerService subscribes to these top-

ics, deserializes incoming messages, and processes the

data accordingly. Kafka's architecture ensures asynchro-

nous, scalable, and reliable communication across the

system.

Journal of Computer Sciences Institute 37 (2025) 457-462

459

3.3. RabbitMQ in Spring Boot

In the Spring Boot implementation of RabbitMQ 4.1, the

system architecture is based on a clear separation of con-

cerns across application layers. REST controllers, such

as AuctionController, CityController, and ImageCon-

troller, handle incoming HTTP requests and delegate

business logic to corresponding facades. The domain

layer uses models and service classes responsible for data

processing and RabbitMQ communication. Asynchro-

nous messaging relies on two main components: Auction-

ProducerService, which publishes messages to the Rab-

bitMQ queue, and AuctionConsumerService, which lis-

tens for incoming messages, interprets them, and per-

forms operations such as saving data to a MySQL data-

base. Data transfer between layers is handled via Data

Transfer Objects (DTOs), which help simplify and organ-

ize the structure of the transmitted information. The im-

plementation leverages Spring annotations such as @Ser-

vice, @Async, and @RestController, allowing the system

to remain modular, scalable, and resilient to communica-

tion failures.

3.4. Apache Kafka in Spring Boot

In the Spring Boot implementation utilizing Apache

Kafka 4.0, the architecture is organized around modular

components that ensure scalability and asynchronous

data flow. Controllers such as AuctionController, City-

Controller, and ImageController serve as entry points for

HTTP requests and delegate logic to domain-level fa-

cades. Kafka integration is managed through services like

ProducerService, which serializes and sends messages to

designated Kafka topics, and ConsumerService, which

subscribes to those topics and processes incoming mes-

sages often resulting in operations such as persisting data

to a MySQL database [8]. Data is encapsulated using

DTOs to maintain clarity and separation between internal

logic and external interfaces. Spring’s support for Kafka
via annotations like @KafkaListener simplifies con-

sumer configuration and promotes clean message han-

dling. This approach allows the application to operate re-

liably in distributed environments, supporting event-

driven communication with high throughput and resili-

ence.

3.5. MySQL database

The database was implemented in MySQL 8.0 to support

the online auction platform used in the experiments and

follows a relational model. It consists of four main tables:

Auctions, Images, Categories, and Cities. The Auctions

table stores information about individual auction listings,

including name, description, price, expiration date, prod-

uct condition, contact phone number, and current status,

with each auction linked to a specific category and city,

and optionally associated with a thumbnail image. The

Images table contains binary data for auction related im-

ages along with metadata such as type and file size, each

tied to a single auction. The Categories table defines item

types available for auction, while the Cities table stores

location data, enabling auctions to be filtered or grouped

geographically. Relationships between tables are

enforced via foreign keys to maintain data integrity. In

the context of performance testing, database interactions

were limited to operations directly triggered by message

broker consumers. These included INSERT operations

when saving new auctions or images received via mes-

sage queues, and SELECT queries when retrieving auc-

tion, city, or category details in response to API requests.

Write-heavy tests (e.g., binary image uploads) primarily

measured the time to persist records in the Auctions and

Images tables, while read-heavy tests measured retrieval

times from Auctions, Cities, and Categories. No complex

joins or additional business logic outside these core op-

erations were executed during benchmarking, ensuring

that measured times reflected message broker integration

and I/O performance rather than application side pro-

cessing.

4. Methods and conduct of research

The research was conducted according to the research

scenario described below, as well as executed in the test

environment and runtime environment described below.

4.1. Research hypotheses

This article investigates and compares two widely used

message queue systems Apache Kafka and RabbitMQ in

the context of modern distributed applications. The goal

is to evaluate their performance and integration capabili-

ties across different technological platforms, namely

Spring Boot and ASP.NET, under varying message

throughput conditions. Based on a literature review and

preliminary analysis, the following research hypotheses

were formulated and tested through controlled experi-

ments:

• Kafka achieves higher throughput than RabbitMQ in

high-volume data processing scenarios, regardless of

the platform.

• RabbitMQ provides lower latency for individual mes-

sage delivery, particularly under light load.

• In Spring Boot environments, RabbitMQ integrates

more efficiently in terms of configuration and runtime

stability.

• In ASP.NET environments, Kafka performs better in

stream processing due to stronger support for data-

driven architectures.

A series of benchmark tests was conducted to validate

these hypotheses under different system loads. The re-

sults provide insights into the optimal use of Kafka and

RabbitMQ depending on the application’s characteristics
and platform, supporting more informed architectural de-

cisions.

4.2. Research scenario and procedure

The aim of this study is to evaluate the performance of

Kafka and RabbitMQ under load [9], focusing on query

execution times, resource usage, and overall system per-

formance. Performance testing was conducted using

Apache JMeter 5.6.3 [10], which simulated concurrent

HTTP/HTTPS requests to the tested applications. Each

application implemented both producer and consumer

Journal of Computer Sciences Institute 37 (2025) 457-462

460

logic for the respective broker, ensuring that messages

were published to the broker, consumed by the applica-

tion, and then persisted in a MySQL database. Three cat-

egories of scenarios were defined, each corresponding to

a different use pattern:

• Binary Data Upload Scenarios (H1-1B, H1-1KB, H1-

10KB): Measured the time required to process binary

image uploads of sizes 1 byte, 1 kilobyte, and 10 kil-

obytes via POST requests. Each scenario ran with 500

concurrent threads for 60 seconds, simulating heavy

upload traffic. Metrics captured included the time

from request submission to the completion of data-

base write operations in the Images and Auctions ta-

bles, throughput in requests per second, and the error

rate.

• Low-Traffic Retrieval Scenarios (H2-Low, H2-Mid,

H2-High): simulated typical application use with 5

concurrent threads issuing GET requests to retrieve

data for a single city, multiple cities, or multiple auc-

tions. The time measurement began at the moment the

HTTP request reached the application and ended

when the corresponding database SELECT query re-

turned data to the client. These tests provided insight

into broker latency under minimal load.

• High-Stress Mixed Scenarios (H3, H4): Combined

POST, GET, and PUT requests under extreme load

conditions with 5,000 concurrent threads over a 90-

second test window. The requests included binary up-

loads, auction updates, and retrieval operations. The

measured execution time covered the complete cycle:

API request receipt, message publication, broker de-

livery, message consumption, database write or read

completion.

To guarantee the reliability and comparability of results,

each test scenario was conducted in a distinct, dedicated

Docker environment version 28.3.3 [11]. Each scenario

was executed three times for each broker framework

combination (.NET and RabbitMQ, .NET and Kafka,

Spring Boot and RabbitMQ, Spring Boot and Kafka).

The mean values from the three runs were used in the fi-

nal analysis to minimize the influence of transient system

fluctuations. For each run, JMeter’s aggregate report was
exported, containing average latency, median latency,

95th percentile latency, throughput, and error rate. In par-

allel, container-level CPU and memory usage were rec-

orded with the docker stats command [12] at one-second

intervals, allowing correlation between resource con-

sumption and observed performance.

4.3. Testing environment

For the purpose of the research scenario, a computer with

the following technical parameters was used, as listed in

Table 1.

Table 1: Testing bench components

Component Parameter

RAM 16GB DDR4 3600MHz

CPU AMD Ryzen 5 5600

3.5GHz

6 cores, 12 threads

Disk ADATA 512GB

M.2 NVMe SX8200 Pro

Motherboard B450 Gaming Plus Max

Software IntelliJ IDEA 2023.1.2

Operating

system

Microsoft Windows 10 Pro

10.0.19045 Compilation 19045

In order to reliably and accurately replicate bench-

marking performance testing procedures on systems built

on top of Apache Kafka and RabbitMQ, an isolated test-

ing environment was built using Docker and Docker

Compose. This method allowed for the swift setup of in-

tricate service matrices that included message brokers,

databases, and monitoring systems.

For each RabbitMQ and Kafka for .NET application,

and each Spring Boot counterpart, a corresponding test

environment was configured.

RabbitMQ + .NET

The environment contains:

• RabbitMQ with a web interface running on port

:15672 and a default broker listening on port :5672.

• rabbitmq-exporter for metrics available on port

:9419.

• MySQL version 8.0 as the application’s database.
• Prometheus and Grafana for monitoring.

Kafka + .NET

The environment contains:

• Kafka running on port :9092 and Zookeeper on :2181,

both version 7.5.0.

• Kafka UI for browsing topics and messages running

on port :8080.

• MySQL version 8.0 as the application’s database.
• Prometheus and Grafana for monitoring.

Rabbit + Spring Boot

The environment contains:

• RabbitMQ with a web interface running on port

:15672 and a default broker listening on port :5672.

• rabbitmq-exporter for metrics available on port

:9419.

• MySQL version 8.0 as the application’s database.
• Prometheus and Grafana for monitoring.

Kafka + Spring Boot

The environment contains:

• Kafka running on port :9092 and Zookeeper on :2181,

both version 7.5.0.

• Kafka UI for browsing topics and messages running

on port :8080.

• MySQL version 8.0 as the application’s database.
• Prometheus and Grafana for monitoring.

Journal of Computer Sciences Institute 37 (2025) 457-462

461

General Docker Compose Settings

All containers in the environments were set the following

container limits:

• CPU: 2 vCPUs.

• RAM: 2 GB.

This setup guarantees uniform measurement condi-

tions across different tested technologies. MySQL data-

bases were attached to the applications to emulate trans-

actional write activity.

Base technology versions:

• Apache Kafka: version 4.0 (running with Zookeeper

7.5.0).

• RabbitMQ: version 4.1 (with rabbitmq_management

plugin enabled).

• .NET Runtime: .NET 8.0 (ASP.NET Core).

• Kotlin: version 2.1.21 running on Spring Boot 3.3.x

(JVM 21).

• MySQL Database: version 8.0.

Each tested stack RabbitMQ with .NET, Kafka with

.NET, RabbitMQ with Spring Boot, and Kafka with

Spring Boot was deployed in a dedicated Docker Com-

pose network to prevent cross-interference. Applications

were built either in ASP.NET Core 8.0 (C#) or Spring

Boot 3.3.x (Kotlin 2.1.21, JVM 21) and implemented

both producer and consumer endpoints, communicating

with a MySQL 8.0 database for transactional persistence.

RabbitMQ 4.1 brokers listened on port 5672, provided a

web UI on port 15672, and exposed metrics via rabbitmq-

exporter on port 9419. Apache Kafka 4.0 brokers opera-

ted on port 9092 with Zookeeper 7.5.0 on port 2181 and

included a Kafka UI on port 8080. Each setup also ran

Prometheus for metric collection and Grafana for real-

time visualization. All containers were limited to 2

vCPUs and 2 GB RAM to ensure identical measurement

conditions, and broker states were reset before each ben-

chmark to avoid caching effects. Each environment also

included a MySQL 8.0 container for handling transactio-

nal writes and reads, ensuring the database interactions

resembled real-world production systems.

5. Research results

The brokers were evaluated on response time, through-

put, memory consumption, and error rate. Results were

obtained using Apache JMeter 5.6.3, which generated the

test workloads and exported aggregate reports with la-

tency, throughput, and error statistics. Container-level

CPU and RAM usage were recorded with docker stats

and cross-checked in Prometheus/Grafana. Each scenario

was executed three times in an isolated Docker Compose

environment, and the mean values were used for the ta-

bles and charts presented below.

5.1. .NET Performance

In the .NET ecosystem, both Kafka and RabbitMQ were

evaluated in terms of average response times, throughput,

and memory usage, which is summarized in the Table 2

below.

Table 2: Performance comparison .NET

Metric RabbitMQ

(.NET)

Kafka

(.NET)

Avg. response

time (ms)

2,130 2,081

Median response

time (ms)

1,876 1,754

95th percentile

(ms)

4,596 4,108

Throughput

(req/sec)

1,272.7 1,279.1

Error rate (%) 16.98% 1.82%

RAM usage

(avg.)

~146 MB ~400 MB

Response times were superior for Kafka, alongside an

improved value in the error rate; however, the error rate

for RabbitMQ was considerably higher.

5.2. Spring Boot performance

There were differences with regards to the performance

trends in the Spring Boot environment. Summarized re-

sults are provided in Table 3.

Table 3: Performance comparison Spring Boot

Metric RabbitMQ

(Spring)

Kafka

(Spring)

Avg. response

time (ms)

1,347 1,593

Median response

time (ms)

1,153 1,510

95th percentile

(ms)

3,081 2,869

Throughput

(req/sec)

1,248.6 1,232.1

Error rate (%) 1.61% 6.63%

RAM usage

(avg.)

~130 MB ~450 MB

Compared to the .NET results, with Spring Boot,

RabbitMQ showed better average and median response

times along with lower memory consumption, while in

Kafka, higher error rates were noted.

5.3. Visual comparition

This section presents a visual comparison of the perfor-

mance metrics collected during the experiments. Charts

and graphs are used to highlight the key differences be-

tween RabbitMQ and Apache Kafka across different load

scenarios and technology platforms. Likewise, Kafka

consumes much more memory in both environments, as

illustrated in Figure 1.

Journal of Computer Sciences Institute 37 (2025) 457-462

462

Figure 1: Average memory usage.

RabbitMQ had approximately the same throughput as

Kafka; however, Kafka marginally excelled in perfor-

mance over RabbitMQ in .NET what can be seen in Fig-

ure 2.

Figure 2: Overall throughput comparison.

6. Conclusions

The present study evaluated the message streaming capa-

bilities of RabbitMQ and Apache Kafka using two soft-

ware stacks: .NET and Spring Boot. The findings show

that Apache Kafka was more consistent in the .NET en-

vironment yielding lower latency, higher throughput, and

far fewer errors – though higher memory consumption.

RabbitMQ, on the other hand, outperforms in the

Spring Boot ecosystem where it achieves lower response

times and reduced memory usage, although Kafka still

remains competitive in throughput.

The results suggest that a message broker’s selection
should be highly scoped to the ecosystem.

Kafka is the ideal option for .NET based systems as it

provides superior reliability and efficiency in scenarios

with high throughput demands and low error tolerances.

For Spring Boot based systems, lightweight and

memory-constrained setups could benefit from Rab-

bitMQ.

These findings help system architects and developers

in selecting a message broker for streaming architectures

targeting systems with strict requirements for latency or

resource consumption.

References

[1] Kafka 4.0 Documentation,

https://kafka.apache.org/documentation, [16.05.2025].

[2] RabbitMQ 4.1 Documentation,

https://www.rabbitmq.com/docs, [16.05.2025].

[3] Kotlin docs Latest stable version: 2.1.21,

https://kotlinlang.org/docs/home.html, [16.05.2025].

[4] .NET documentation, https://learn.microsoft.com/en-

us/dotnet/, [16.05.2025].

[5] S. Henning, W. Hasselbring, Benchmarking scalability of

stream processing frameworks deployed as microservices

in the cloud, Journal of Systems and Software 208 (2023)

111879, https://doi.org/10.1016/j.jss.2023.111879.

[6] A. Lercher, J. Glock, C. Macho, M. Pinzger, Microservice

API Evolution in Practice: A Study on Strategies and

Challenges, Journal of Systems and Software 215 (2024)

112110, https://doi.org/10.1016/j.jss.2024.112110.

[7] A. Pathak, C. Kalaiarasan, RabbitMQ Queuing

Mechanism of Publish Subscribe model for better

Throughput and Response, Fourth International

Conference on Electrical, Computer and Communication

Technologies (2021) 1–7,

https://doi.org/10.1109/icecct52121.2021.9616722.

[8] T. P. Raptis, C. Cicconetti, A. Passarella, Efficient topic

partitioning of Apache Kafka for high-reliability real-time

data streaming applications, Future Generation Computer

Systems 154 (2024) 173–188,

https://doi.org/10.1016/j.future.2023.12.028.

[9] S. Dyjach, M. Plechawska-Wójcik, Efficiency comparison
of message brokers, J. Comput. Sci. Inst. 31 (2024) 116–
123, https://doi.org/10.35784/jcsi.6084.

[10] Apache JMeter 5.6.3 Documentation,

https://jmeter.apache.org/usermanual/index.html,

[16.05.2025].

[11] Docker 28.3.3. Documentation, https://docs.docker.com/,

[16.05.2025].

[12] S. Ronglong, C. Arpnikanondt, Signal: An open-source

cross-platform universal messaging system with feedback

support, Journal of Systems and Software 117 (2016) 30–
54, https://doi.org/10.1016/j.jss.2016.02.018.

https://kafka.apache.org/documentation/
https://www.rabbitmq.com/docs
https://kotlinlang.org/docs/home.html
https://learn.microsoft.com/en-us/dotnet/
https://learn.microsoft.com/en-us/dotnet/
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.1016/j.jss.2024.112110
https://doi.org/10.1109/icecct52121.2021.9616722
https://doi.org/10.1016/j.future.2023.12.028
https://doi.org/10.35784/jcsi.6084
https://jmeter.apache.org/usermanual/index.html
https://docs.docker.com/
https://doi.org/10.1016/j.jss.2016.02.018

