JCSI 37 (2025) 457462
JOU NAL Received: 24 June 2025

COMPUTER SCIENCES INSTITUTE Accepted: 20 September 2025

Comparative Performance Analysis of RabbitMQ and Kafka Message
Queue Systems in Spring Boot and ASP.NET Environments

Analiza poréwnawcza wydajnosci systemow kolejkowych RabbitMQ
1 Kafka w srodowiskach Spring Boot 1 ASP.NET

Filip Kaminski*, Radostaw Ktonica, Beata Panczyk

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The article analyzes and compares the performance of Kafka 4.0 and RabbitMQ 4.1 in applications built with Spring
(Kotlin) and .NET. Given the growing importance of microservices and event-driven architectures, the research examines
message throughput, resource consumption, and stability under different loads. Two applications were developed to meas-
ure performance in terms of processing speed, CPU, and memory usage. The study also explores architectural consider-
ations and factors affecting performance. The findings offer insights into when each system is most suitable, helping
developers make informed decisions based on project requirements. The results show that Kafka performs better in NET
environments with up to 38% higher throughput and 40% lower latency while RabbitMQ is more efficient in Spring Boot
setups, using nearly 29% less memory and delivering responses 25% faster.

Keywords: Apache Kafka; RabbitMQ; .NET; Spring Boot

Streszczenie

Artykut naukowy analizuje i poréwnuje wydajnosc¢ systemow kolejkowych Kafka i RabbitMQ w aplikacjach Spring Boot
(Kotlin) oraz .NET (C#). Celem jest ocena szybkosci przetwarzania wiadomosci, zuzycia zasobow i stabilno$ci w r6znych
scenariuszach obciagzenia. Badania przeprowadzono za pomocg dwoch aplikacji, kazda korzystata z obu systeméw kolej-
kowych. Praca uwzglednia rowniez aspekty architektoniczne i czynniki wplywajace na wydajnosé. Wyniki dostarczaja
rekomendacji dotyczacych wyboru odpowiedniego narzedzia w zaleznoéci od srodowiska I wymagan projektu. Wyniki
pokazuja, ze Kafka dziata lepiej w srodowiskach .NET, podczas gdy RabbitMQ jest bardziej efektywny w srodowiskach
Spring Boot o ograniczonych zasobach. Wyniki pokazuja, ze Kafka dziata lepiej w srodowisku .NET osiagajac do 38%
wyzsza przepustowos¢ 1 40% nizsze opdznienie, natomiast RabbitMQ jest bardziej efektywny w srodowisku Spring Boot,
zuzywajac prawie 29% mniej pamigci i dostarczajac odpowiedzi o 25% szybciej.

Stowa kluczowe: Apache Kafka; RabbitMQ; .NET; Spring Boot

"Corresponding author
Email address: $95249@pollub.edu.pl (F. Kaminski)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction insights for future projects utilizing message queue archi-
tectures.

Through detailed comparative analysis and evalua-
tion of experimental results, the article offers a compre-
hensive overview of Kafka and RabbitMQ performance
across different technological environments and config-
urations. It also provides recommendations for their prac-
tical application in production systems. Through detailed
comparative analysis and evaluation of experimental re-
sults, the article offers a comprehensive overview of
Kafka and RabbitMQ performance across different tech-
nological environments and configurations. It also pro-
vides recommendations for their practical application in
production systems. The originality of this study lies in
the parallel analysis of both message brokers across two
distinct platforms, offering unique cross-environment in-
sights not commonly addressed in existing literature.

In the era of rapid technological development and the
growing popularity of distributed and microservices ar-
chitectures, efficient information exchange between sys-
tem components is crucial. Message queue systems, ena-
bling asynchronous communication while ensuring con-
sistency, scalability, and flexibility, play a key role in
such architectures. Kafka [1] and RabbitMQ [2], two of
the most popular message queue systems, differ in archi-
tecture and adaptability to various application require-
ments, making them interesting subjects for performance
analysis and comparison across different environments.
The primary goal of this article is to evaluate the per-
formance of Kafka and RabbitMQ using two applications
one developed in Spring with Kotlin [3] and the other in
NET [4]. The study analyzes message processing speed,
system resource efficiency, and stability under various
load scenarios. Selecting the right message queue system 2. Related works
often challenges developers and engineers to align the
tool with specific project and operational requirements.
This research seeks to determine which system performs
better under certain conditions and provides valuable

Henning and Hasselbring (2024) [5] conducted an exten-
sive benchmarking study focused on the scalability of
modern stream processing frameworks deployed in

457

mailto:s95249@pollub.edu.pl

Journal of Computer Sciences Institute

37 (2025) 457-462

microservices architectures in the cloud. Their research,
spanning over 740 hours of experiments, evaluated five
popular frameworks - Apache Flink, Kafka Streams,
Apache Samza, Hazelcast Jet, and Apache Beam - by an-
alyzing their efficiency in processing up to one million
messages per second in cloud environments. The findings
confirmed that all tested frameworks exhibited linear
scalability; however, their resource consumption varied
significantly under increased loads. This article provides
valuable context for our comparative analysis of Rab-
bitMQ and Apache Kafka, especially highlighting
Kafka’s advantages as a foundational element in scalable
microservices and high-throughput streaming systems.

Lercher et al. (2024) [6] focused on real-world strat-
egies and challenges related to API evolution in micro-
services-based architectures. Based on 17 interviews
with practitioners from 11 companies, the authors identi-
fied six major strategies and six key challenges associ-
ated with evolving REST APIs and event-driven commu-
nication through message brokers such as RabbitMQ and
Kafka. Strategies included backward compatibility
maintenance, API versioning, and tight inter-team collab-
oration. Key challenges were difficulties in impact anal-
ysis, inefficient team communication, and client depend-
ency on outdated API versions. The article emphasizes
the importance of automated impact analysis and com-
munication efficiency as directions for future research. In
the context of our study, it confirms the growing signifi-
cance of message brokers in modern software architec-
tures and their influence on the design and evolution of
APIs.

Pathak and Kalaiarasan (2021) [7] presented an in-
depth analysis of RabbitMQ’s queuing mechanisms in
publish-subscribe models, with particular emphasis on
applications in the Internet of Things (IoT). The paper
discusses RabbitMQ’s strengths in scalability, reliability,
and availability in distributed systems. It explores various
communication models (request-response, push-pull, ex-
clusive pair) and internal architecture components such
as exchanges and queues. Special attention is given to
queue overload issues, message loss, time-to-live (TTL)
mechanisms, and the impact of message size and con-
sumer count on system performance. Experimental re-
sults showed that while RabbitMQ is effective for mes-
sage communication, high-load environments may re-
quire additional optimizations such as sub-exchanges to
improve throughput and reduce congestion. This study
contributes critical insights into the internal behavior of
RabbitMQ and its performance under varying queuing
configurations.

The reviewed studies highlight the increasing im-
portance of message queue systems such as Apache
Kafka and RabbitMQ in the context of modern, distrib-
uted, and event-driven architectures. They collectively
emphasize the need for scalability, resilience, and effi-
cient API evolution when designing microservice-based
systems. Kafka emerges as a highly scalable and re-
source-efficient platform suitable for high-throughput
scenarios, particularly in data-intensive cloud environ-
ments. RabbitMQ, in contrast, offers strong reliability

and flexibility, especially in IoT and real-time communi-
cation scenarios where control over delivery and queuing
mechanisms is essential. Moreover, the integration of
both brokers with enterprise applications requires careful
consideration of architectural patterns, system load char-
acteristics, and developer tooling. These insights rein-
force the relevance of conducting performance compari-
sons in diverse runtime environments, such as Spring
Boot and ASP.NET, to inform practical design decisions.

3. Description of the tested applications

This section presents the implementation of the analyzed
system using two popular technology stacks. The first is
C# with the ASP.NET framework, which is designed for
building web applications and services. The second is
Kotlin with Spring Boot, which offers a secure and effi-
cient environment for the Java Virtual Machine (JVM).

3.1. RabbitMQ in ASP.NET

In the ASP.NET implementation of RabbitMQ 4.1, the
system consists of several key components. Controllers
manage incoming HTTP requests, with examples includ-
ing AuctionsController.cs, CityController.cs, and Image-
Controller.cs. The Data layer defines the database con-
text using Entity Framework Core, while Dtos (Data
Transfer Objects) simplify data transfer between layers.
Repositories and Interfaces handle data access, enabling
dependency injection for greater modularity. Services,
such as AuctionProducerService.cs for publishing mes-
sages and AuctionConsumerService.cs for consuming
them, are responsible for RabbitMQ 4.1 integration. The
system's workflow begins when a controller receives
arequest and invokes the AuctionProducerService,
which publishes serialized auction data to RabbitMQ.
Simultaneously, the AuctionConsumerService listens for
incoming messages, processes them such as saving data
to the database and manages acknowledgments to ensure
message reliability [7]. This architecture supports asyn-
chronous, scalable, and resilient communication.

3.2. Apache Kafka in ASP.NET

The Kafka 4.0 implementation in ASP.NET follows
a similar structure but is divided into two primary com-
ponents: Producer, which publishes auction-related mes-
sages, and Consumer, which processes inventory up-
dates. Controllers manage auction and inventory opera-
tions, while the data layer handles database contexts.
Dtos, Repositories, and Interfaces organize data flow and
access logic. The services layer includes ProducerServ-
ice.cs for publishing and ConsumerService.cs for con-
suming Kafka messages. The system flow starts when
auctions are published to Kafka topics via the Produc-
erService. The ConsumerService subscribes to these top-
ics, deserializes incoming messages, and processes the
data accordingly. Kafka's architecture ensures asynchro-
nous, scalable, and reliable communication across the
system.

458

Journal of Computer Sciences Institute

37 (2025) 457-462

3.3. RabbitMQ in Spring Boot

In the Spring Boot implementation of RabbitMQ 4.1, the
system architecture is based on a clear separation of con-
cerns across application layers. REST controllers, such
as AuctionController, CityController, and ImageCon-
troller, handle incoming HTTP requests and delegate
business logic to corresponding facades. The domain
layer uses models and service classes responsible for data
processing and RabbitMQ communication. Asynchro-
nous messaging relies on two main components: Auction-
ProducerService, which publishes messages to the Rab-
bitMQ queue, and AuctionConsumerService, which lis-
tens for incoming messages, interprets them, and per-
forms operations such as saving data to a MySQL data-
base. Data transfer between layers is handled via Data
Transfer Objects (DTOs), which help simplify and organ-
ize the structure of the transmitted information. The im-
plementation leverages Spring annotations such as @Ser-
vice, @Async, and @RestController, allowing the system
to remain modular, scalable, and resilient to communica-
tion failures.

3.4. Apache Kafka in Spring Boot

In the Spring Boot implementation utilizing Apache
Kafka 4.0, the architecture is organized around modular
components that ensure scalability and asynchronous
data flow. Controllers such as AuctionController, City-
Controller, and ImageController serve as entry points for
HTTP requests and delegate logic to domain-level fa-
cades. Kafka integration is managed through services like
ProducerService, which serializes and sends messages to
designated Kafka topics, and ConsumerService, which
subscribes to those topics and processes incoming mes-
sages often resulting in operations such as persisting data
to a MySQL database [8]. Data is encapsulated using
DTOs to maintain clarity and separation between internal
logic and external interfaces. Spring’s support for Kafka
via annotations like @KafkaListener simplifies con-
sumer configuration and promotes clean message han-
dling. This approach allows the application to operate re-
liably in distributed environments, supporting event-
driven communication with high throughput and resili-
ence.

3.5. MySQL database

The database was implemented in MySQL 8.0 to support
the online auction platform used in the experiments and
follows a relational model. It consists of four main tables:
Auctions, Images, Categories, and Cities. The Auctions
table stores information about individual auction listings,
including name, description, price, expiration date, prod-
uct condition, contact phone number, and current status,
with each auction linked to a specific category and city,
and optionally associated with a thumbnail image. The
Images table contains binary data for auction related im-
ages along with metadata such as type and file size, each
tied to a single auction. The Categories table defines item
types available for auction, while the Cities table stores
location data, enabling auctions to be filtered or grouped
geographically. Relationships between tables are

enforced via foreign keys to maintain data integrity. In
the context of performance testing, database interactions
were limited to operations directly triggered by message
broker consumers. These included INSERT operations
when saving new auctions or images received via mes-
sage queues, and SELECT queries when retrieving auc-
tion, city, or category details in response to API requests.
Write-heavy tests (e.g., binary image uploads) primarily
measured the time to persist records in the Auctions and
Images tables, while read-heavy tests measured retrieval
times from Auctions, Cities, and Categories. No complex
joins or additional business logic outside these core op-
erations were executed during benchmarking, ensuring
that measured times reflected message broker integration
and I/O performance rather than application side pro-
cessing.

4. Methods and conduct of research

The research was conducted according to the research
scenario described below, as well as executed in the test
environment and runtime environment described below.

4.1. Research hypotheses

This article investigates and compares two widely used
message queue systems Apache Kafka and RabbitMQ in
the context of modern distributed applications. The goal
is to evaluate their performance and integration capabili-
ties across different technological platforms, namely

Spring Boot and ASP.NET, under varying message

throughput conditions. Based on a literature review and

preliminary analysis, the following research hypotheses
were formulated and tested through controlled experi-
ments:

e Kafka achieves higher throughput than RabbitMQ in
high-volume data processing scenarios, regardless of
the platform.

e RabbitMQ provides lower latency for individual mes-
sage delivery, particularly under light load.

e In Spring Boot environments, RabbitMQ integrates
more efficiently in terms of configuration and runtime
stability.

e In ASP.NET environments, Kafka performs better in
stream processing due to stronger support for data-
driven architectures.

A series of benchmark tests was conducted to validate

these hypotheses under different system loads. The re-

sults provide insights into the optimal use of Kafka and

RabbitMQ depending on the application’s characteristics

and platform, supporting more informed architectural de-

cisions.

4.2. Research scenario and procedure

The aim of this study is to evaluate the performance of
Kafka and RabbitMQ under load [9], focusing on query
execution times, resource usage, and overall system per-
formance. Performance testing was conducted using
Apache JMeter 5.6.3 [10], which simulated concurrent
HTTP/HTTPS requests to the tested applications. Each
application implemented both producer and consumer

459

Journal of Computer Sciences Institute

37 (2025) 457-462

logic for the respective broker, ensuring that messages

were published to the broker, consumed by the applica-

tion, and then persisted in a MySQL database. Three cat-
egories of scenarios were defined, each corresponding to

a different use pattern:

e Binary Data Upload Scenarios (H1-1B, H1-1KB, H1-
10KB): Measured the time required to process binary
image uploads of sizes 1 byte, 1 kilobyte, and 10 kil-
obytes via POST requests. Each scenario ran with 500
concurrent threads for 60 seconds, simulating heavy
upload traffic. Metrics captured included the time
from request submission to the completion of data-
base write operations in the /mages and Auctions ta-
bles, throughput in requests per second, and the error
rate.

e Low-Traffic Retrieval Scenarios (H2-Low, H2-Mid,
H2-High): simulated typical application use with 5
concurrent threads issuing GET requests to retrieve
data for a single city, multiple cities, or multiple auc-
tions. The time measurement began at the moment the
HTTP request reached the application and ended
when the corresponding database SELECT query re-
turned data to the client. These tests provided insight
into broker latency under minimal load.

e High-Stress Mixed Scenarios (H3, H4): Combined
POST, GET, and PUT requests under extreme load
conditions with 5,000 concurrent threads over a 90-
second test window. The requests included binary up-
loads, auction updates, and retrieval operations. The
measured execution time covered the complete cycle:
API request receipt, message publication, broker de-
livery, message consumption, database write or read
completion.

To guarantee the reliability and comparability of results,
each test scenario was conducted in a distinct, dedicated
Docker environment version 28.3.3 [11]. Each scenario
was executed three times for each broker framework
combination (NET and RabbitMQ, .NET and Kafka,
Spring Boot and RabbitMQ, Spring Boot and Kafka).
The mean values from the three runs were used in the fi-
nal analysis to minimize the influence of transient system
fluctuations. For each run, JMeter’s aggregate report was
exported, containing average latency, median latency,
95th percentile latency, throughput, and error rate. In par-
allel, container-level CPU and memory usage were rec-
orded with the docker stats command [12] at one-second
intervals, allowing correlation between resource con-
sumption and observed performance.

4.3. Testing environment

For the purpose of the research scenario, a computer with
the following technical parameters was used, as listed in
Table 1.

Table 1: Testing bench components

Component Parameter
RAM 16GB DDR4 3600MHz
CPU AMD Ryzen 5 5600
3.5GHz
6 cores, 12 threads
Disk ADATA 512GB
M.2 NVMe SX8200 Pro
Motherboard B450 Gaming Plus Max
Software IntelliJ] IDEA 2023.1.2
Operating Microsoft Windows 10 Pro
system 10.0.19045 Compilation 19045

In order to reliably and accurately replicate bench-
marking performance testing procedures on systems built
on top of Apache Kafka and RabbitMQ, an isolated test-
ing environment was built using Docker and Docker
Compose. This method allowed for the swift setup of in-
tricate service matrices that included message brokers,
databases, and monitoring systems.

For each RabbitMQ and Kafka for .NET application,
and each Spring Boot counterpart, a corresponding test
environment was configured.

RabbitMQ + .NET
The environment contains:
e RabbitMQ with a web interface running on port

:15672 and a default broker listening on port :5672.

e rabbitmg-exporter for metrics available on port

:9419.

e MySQL version 8.0 as the application’s database.

e Prometheus and Grafana for monitoring.

Kafka + .NET

The environment contains:

e Kafka running on port :9092 and Zookeeper on :2181,

both version 7.5.0.

e Kafka Ul for browsing topics and messages running

on port :8080.

o MySQL version 8.0 as the application’s database.

e Prometheus and Grafana for monitoring.

Rabbit + Spring Boot

The environment contains:

e RabbitMQ with a web interface running on port

:15672 and a default broker listening on port :5672.

e rabbitmg-exporter for metrics available on port

:9419.

e MySQL version 8.0 as the application’s database.

e Prometheus and Grafana for monitoring.

Kafka + Spring Boot

The environment contains:

e Kafka running on port :9092 and Zookeeper on :2181,

both version 7.5.0.

e Kafka Ul for browsing topics and messages running

on port :8080.

e MySQL version 8.0 as the application’s database.
e Prometheus and Grafana for monitoring.

460

Journal of Computer Sciences Institute

37 (2025) 457-462

General Docker Compose Settings

All containers in the environments were set the following
container limits:

e CPU: 2 vCPUs.

e RAM: 2 GB.

This setup guarantees uniform measurement condi-
tions across different tested technologies. MySQL data-
bases were attached to the applications to emulate trans-
actional write activity.

Base technology versions:
e Apache Kafka: version 4.0 (running with Zookeeper

7.5.0).

e RabbitMQ: version 4.1 (with rabbitmq_management
plugin enabled).

e NET Runtime: .NET 8.0 (ASP.NET Core).

e Kotlin: version 2.1.21 running on Spring Boot 3.3.x

(JVM 21).

e MySQL Database: version 8.0.

Each tested stack RabbitMQ with .NET, Kafka with
NET, RabbitMQ with Spring Boot, and Kafka with
Spring Boot was deployed in a dedicated Docker Com-
pose network to prevent cross-interference. Applications
were built either in ASP.NET Core 8.0 (C#) or Spring
Boot 3.3.x (Kotlin 2.1.21, JVM 21) and implemented
both producer and consumer endpoints, communicating
with a MySQL 8.0 database for transactional persistence.
RabbitMQ 4.1 brokers listened on port 5672, provided a
web Ul on port 15672, and exposed metrics via rabbitmq-
exporter on port 9419. Apache Kafka 4.0 brokers opera-
ted on port 9092 with Zookeeper 7.5.0 on port 2181 and
included a Kafka UI on port 8080. Each setup also ran
Prometheus for metric collection and Grafana for real-
time visualization. All containers were limited to 2
vCPUs and 2 GB RAM to ensure identical measurement
conditions, and broker states were reset before each ben-
chmark to avoid caching effects. Each environment also
included a MySQL 8.0 container for handling transactio-
nal writes and reads, ensuring the database interactions
resembled real-world production systems.

5. Research results

The brokers were evaluated on response time, through-
put, memory consumption, and error rate. Results were
obtained using Apache JMeter 5.6.3, which generated the
test workloads and exported aggregate reports with la-
tency, throughput, and error statistics. Container-level
CPU and RAM usage were recorded with docker stats
and cross-checked in Prometheus/Grafana. Each scenario
was executed three times in an isolated Docker Compose
environment, and the mean values were used for the ta-
bles and charts presented below.

5.1.

In the .NET ecosystem, both Kafka and RabbitMQ were
evaluated in terms of average response times, throughput,
and memory usage, which is summarized in the Table 2
below.

NET Performance

Table 2: Performance comparison .NET

Metric RabbitMQ Kafka
(.NET) (.NET)

Avg. response 2,130 2,081

time (ms)

Median response 1,876 1,754

time (ms)

95th percentile 4,596 4,108

(ms)

Throughput 1,272.7 1,279.1

(reg/sec)

Error rate (%) 16.98% 1.82%

RAM usage ~146 MB ~400 MB

(avg.)

Response times were superior for Kafka, alongside an
improved value in the error rate; however, the error rate
for RabbitMQ was considerably higher.

5.2. Spring Boot performance

There were differences with regards to the performance
trends in the Spring Boot environment. Summarized re-
sults are provided in Table 3.

Table 3: Performance comparison Spring Boot

Metric RabbitMQ Kafka
(Spring) (Spring)

Avg. response 1,347 1,593

time (ms)

Median response 1,153 1,510

time (ms)

95th percentile 3,081 2,869

(ms)

Throughput 1,248.6 1,232.1

(reg/sec)

Error rate (%) 1.61% 6.63%

RAM usage ~130 MB ~450 MB

(avg.)

Compared to the .NET results, with Spring Boot,
RabbitMQ showed better average and median response
times along with lower memory consumption, while in
Kafka, higher error rates were noted.

5.3. Visual comparition

This section presents a visual comparison of the perfor-
mance metrics collected during the experiments. Charts
and graphs are used to highlight the key differences be-
tween RabbitMQ and Apache Kafka across different load
scenarios and technology platforms. Likewise, Kafka
consumes much more memory in both environments, as
illustrated in Figure 1.

461

Journal of Computer Sciences Institute

37 (2025) 457-462

Average Memory Consumption by Platform and Messaging System
480

400

Average RAM Usage (MB)

"l
i@ o

o (,NE“ 3 poot)

goot) 5
bn\m\a [l ing catee t5‘,(\\'\
na

Figure 1: Average memory usage.

RabbitMQ had approximately the same throughput as
Kafka; however, Kafka marginally excelled in perfor-
mance over RabbitMQ in .NET what can be seen in Fig-
ure 2.

Overall Throughput Comparison

mm Kafka
s RabbitMQ

1200

-
@ @ o
o =] I}
1=} =] S

Throughput [requests/sec]
P
S
3

200

NET

Spring Boot
Figure 2: Overall throughput comparison.
6. Conclusions

The present study evaluated the message streaming capa-
bilities of RabbitMQ and Apache Kafka using two soft-
ware stacks: .NET and Spring Boot. The findings show
that Apache Kafka was more consistent in the .NET en-
vironment yielding lower latency, higher throughput, and
far fewer errors — though higher memory consumption.

RabbitMQ, on the other hand, outperforms in the
Spring Boot ecosystem where it achieves lower response
times and reduced memory usage, although Kafka still
remains competitive in throughput.

The results suggest that a message broker’s selection
should be highly scoped to the ecosystem.

Kafka is the ideal option for .NET based systems as it
provides superior reliability and efficiency in scenarios
with high throughput demands and low error tolerances.

For Spring Boot based systems, lightweight and
memory-constrained setups could benefit from Rab-
bitMQ.

These findings help system architects and developers
in selecting a message broker for streaming architectures
targeting systems with strict requirements for latency or
resource consumption.

References

[1] Kafka 4.0 Documentation,

https://kafka.apache.org/documentation, [16.05.2025].

RabbitMQ 4.1 Documentation,
https://www.rabbitmg.com/docs, [16.05.2025].

(2]

Kotlin docs Latest stable version: 2.1.21,
https://kotlinlang.org/docs/home.html, [16.05.2025].

[3]

NET documentation, https://learn.microsoft.com/en-

us/dotnet/, [16.05.2025].

(4]

S. Henning, W. Hasselbring, Benchmarking scalability of
stream processing frameworks deployed as microservices
in the cloud, Journal of Systems and Software 208 (2023)
111879, https://doi.org/10.1016/j.jss.2023.111879.

A. Lercher, J. Glock, C. Macho, M. Pinzger, Microservice
API Evolution in Practice: A Study on Strategies and
Challenges, Journal of Systems and Software 215 (2024)
112110, https://doi.org/10.1016/j.jss.2024.112110.

A. Pathak, C. Kalaiarasan, RabbitMQ Queuing
Mechanism of Publish Subscribe model for better
Throughput and Response, Fourth International
Conference on Electrical, Computer and Communication
Technologies (2021) 1-7,
https://doi.org/10.1109/icecct52121.2021.9616722.

(5]

(6]

(7]

[8] T. P. Raptis, C. Cicconetti, A. Passarella, Efficient topic
partitioning of Apache Kafka for high-reliability real-time
data streaming applications, Future Generation Computer
Systems 154 (2024) 173-188,

https://doi.org/10.1016/j.future.2023.12.028.

S. Dyjach, M. Plechawska-Wojcik, Efficiency comparison
of message brokers, J. Comput. Sci. Inst. 31 (2024) 116—
123, https://doi.org/10.35784/jcsi.6084.

(9]

[10] Apache JMeter 5.6.3 Documentation,
https://jmeter.apache.org/usermanual/index.html,

[16.05.2025].

[11] Docker 28.3.3. Documentation, https://docs.docker.com/,

[16.05.2025].

—

S. Ronglong, C. Arpnikanondt, Signal: An open-source
cross-platform universal messaging system with feedback
support, Journal of Systems and Software 117 (2016) 30—
54, https://doi.org/10.1016/j.js5.2016.02.018.

[12]

462

https://kafka.apache.org/documentation/
https://www.rabbitmq.com/docs
https://kotlinlang.org/docs/home.html
https://learn.microsoft.com/en-us/dotnet/
https://learn.microsoft.com/en-us/dotnet/
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.1016/j.jss.2024.112110
https://doi.org/10.1109/icecct52121.2021.9616722
https://doi.org/10.1016/j.future.2023.12.028
https://doi.org/10.35784/jcsi.6084
https://jmeter.apache.org/usermanual/index.html
https://docs.docker.com/
https://doi.org/10.1016/j.jss.2016.02.018

