JCSI 37 (2025) 463-469
JOU NAL Received: 24 June 2025

COMPUTER SCIENCES INSTITUTE Accepted: 20 September 2025

Analiza aktualnych zagrozen i zabezpieczen stosowanych w aplikacjach
internetowych na przyktadzie Symfony, Express 1 Spring Boot

Analysis of current threats and security measures used in web applications
on the example of Symfony, Express, and Spring Boot

Magdalena Kramek*, Karol Mateusz Kurowski

Departament of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The article analyzes the most common threats currently appearing in web applications and compares the built-in security
features of Symfony, Express, and Spring Boot frameworks. The study aimed to identify security gaps, assess their risk,
and then present practices that enable effective protection against attacks. The priority was to create four applications that
were all identical in terms of structure. Tested applications were designed to have built-in security mechanisms from
analyzed threats. The greatest threats currently are Broken Access Control attacks, cryptographic vulnerabilities, and code
injection. The research process was conducted using Burp Suite Professional, SQLMap, XSSER, and Hydra tools. The
results indicate that Symfony and Spring Boot are the best protected against the threats. Additionally, the default Express
skeleton mechanisms do not protect the application from Cross Site Scripting (XSS) attacks.

Keywords: security; Symfony; Express; Spring Boot

Streszczenie

Artykut obejmuje analiz¢ najczestszych zagrozen pojawiajacych si¢ obecnie w aplikacjach internetowych oraz poréwna-
nie zabezpieczen wbudowanych w szkielety programistyczne Symfony, Express oraz Spring Boot. Badanie miato na celu
zidentyfikowanie luk w bezpieczenstwie, ocene ich ryzyka, a nastgpnie przedstawienie praktyk umozliwiajacych sku-
teczng ochrone przed atakami. Priorytetem bylo stworzenie czterech aplikacji, ktore beda identyczne pod wzglgdem swo-
jej struktury. Testowane aplikacje zostaty zaprojektowane w taki sposob, aby posiadaty wbudowane zabezpieczenia prze-
ciw analizowanym zagrozeniom. Najwicksze zagrozenie obecnie stanowig ataki typu Broken Access Control, luki kryp-
tograficzne i wstrzykiwanie kodu. Proces badawczy zostat przeprowadzony z wykorzystaniem narzedzi Burp Suite Pro-
fessional, SQLMap, XSSER oraz Hydra. Otrzymane wyniki wskazuja, Ze najlepiej zabezpieczonymi pod wzgledem wy-
zej wymienionych zagrozen sg Symfony oraz Spring Boot. Ponadto domyslne mechanizmy szkieletu Express nie zabez-
pieczaja aplikacji przed atakami Cross Site Scripting (XSS).

Stowa kluczowe: bezpieczenstwo; Symfony; Express; Spring Boot

*Corresponding author
E-mail address: $95453@pollub.edu.pl (M. Kramek)

Published under Creative Common License (CC BY 4.0 Int.)

1. Wstep m.in. powszechno$¢ zto§liwych systemow czy ograni-
czona wiedza uzytkownikéw dotyczacych bezpieczen-
stwa. W $wietle tych zagrozen bardzo wazna jest kwestia
zabezpieczen wbudowanych w aplikacje internetowe.

Implementowanie wtasnych zabezpieczen przez ze-
spoty programistyczne potrafi by¢ czasochlonne i wyma-
gac specjalistycznej wiedzy z zakresu cyberbezpieczen-
stwa. Natomiast wiele wspotczesnych szkieletow progra-
mistycznych udostepnia gotowe moduty, ktére moga po-
moc ochroni¢ aplikacje na wielu ptaszczyznach. Jednak
w zaleznosci od technologii i sposobu implementacji
dane szkielety mogg charakteryzowac si¢ roznym pozio-
mem odpornosci.

Dostepne byly nieliczne zrodta literatury analizujace
bezpieczenstwo poszczegolnych szkieletow [2, 3, 4], jed-
nak nie zostalo do tej pory przeprowadzone szczegétowe
badania dotyczace zabezpieczen w szkieletach Symfony,
Express oraz Spring Boot. Odnalezione pozycje jedynie
pobieznie przedstawialy kwestie bezpieczenstwa, gtow-
nie skupiajac si¢ na wydajnosci poszczegdlnych szkiele-
tow. Niniejszy artykut wlasnie tym si¢ bedzie wyrozniac,
7ze bezpieczenstwo wskazanych szkieletow zostato

W dobie szerokiego rozwoju technologicznego spote-
czenstwo staje si¢ coraz bardziej zalezne od systemow
internetowych. Te stanowig juz nieodlaczng cz¢s¢ ludz-
kiego zycia. Aplikacje upraszczaja codzienne zycie,
umozliwiajg ludziom korzystanie z bankowosci interne-
towej. Dzigki ich rozwojowi strony rzadowe pozwalaja
na sktadanie dokumentow urzedowych poprzez internet.
Obecno$¢ medidow spoteczno$ciowych oraz platform
streamingowych, ktére w swoich zamierzeniach maja
dostarcza¢ rozrywki, ostatecznie pochlania ogromna
ilo$¢ czasu kazdego czlowieka.

Wszystkie te aplikacje z pewnoS$cig potrafig wiele
ulatwié, jednak nalezy pamigtaé, ze ze wzglgdu na ich
sposob dziatania wymuszajg na uzytkowniku podawanie
jego prywatnych danych. By mogt on w pehni korzystac
z zapewnianych przez nie funkcjonalnosci, systemy za-
pisuja wiele informacji. Wiaze si¢ to z nieodtacznym ry-
zykiem utraty wrazliwych danych. Niebezpieczenstw do-
tyczacych korzystania z aplikacji internetowych jednak
jest z dnia na dzien coraz wigcej, do czego przyczynia si¢

463

mailto:s95453@pollub.edu.pl

Journal of Computer Sciences Institute

37 (2025) 463-469

przetestowane i zweryfikowane. Ze wzgledu na wynik
analizy zrodet zdecydowano si¢ potaczy¢ aspekt badan
zagrozen z wbudowanymi zabezpieczeniami, by nastep-
nie na ich przyktadach zebra¢ cenne wskazowki doty-
czace pracy z danym szkieletem programistycznym.

2. Przeglad literatury

W celu przeprowadzenia warto$ciowej analizy aktual-
nych zagrozen, a nast¢pnie wykonania szczegodtowych
testow bezpieczenstwa wybranych szkieletow programi-
stycznych zapoznano si¢ z dotychczasowymi pozycjami
literatury. Kluczowym zrédlem okazat si¢ raport stwo-
rzony przez fundacje OWASP (Open Worldwide Appli-
cation Security Project) [https://owasp.org], ktory przed-
stawia ranking dziesigciu najczestszych zagrozen w apli-
kacjach internetowych. Na szczycie klasyfikacji [1] znaj-
duja sig ataki z kategorii typu Broken Access Control do-
tyczace nieautoryzowanych dostepow do zasobow sys-
temu. Obejmuje ona m.in. pozyskiwanie dostgpu do
wrazliwych informacji, wprowadzanie modyfikacji czy
nawet usuwanie danych lub przeprowadzanie dziatan
poza zasi¢giem dedykowanego uzytkownika. Do drugich
w kolejnosci zagrozen naleza luki kryptograficzne, ktére
grupuja przestarzate algorytmy mieszajagce, domyslne
lub zbyt krotkie klucze szyfrujace czy tez uzywanie loso-
wosci do celow kryptograficznych. Na trzeciej pozycji
widnieje wstrzykiwanie, ktore opiera si¢ na przekazywa-
niu np. w polach formularza kodu wydobywajacego re-
kordy z bazy danych. W przypadku braku filtrowania po-
zyskiwanych ciagdw znakow taka aplikacja nie zapewnia
odpowiedniego bezpieczenstwa danym.

W konferencji Critical Infrastructure Protection in the
Light of the Armed Conflicts znajduje si¢ artykut [2],
w ktorym Zlatko Covi¢ dokonat opisu wyzej wymienio-
nych zagrozen bezpieczenstwa aplikacji webowych. Na
podstawie przyktadéw przedstawia scenariusze atakow
oraz oferowane rozwigzania ochrony przed tymi zagro-
zeniami, podkreslajac znaczenie bezpieczenstwa w co-
dziennym korzystaniu z aplikacji webowych.

W artykule z 2018 roku [3] zaprezentowano badanie
podatnosci na wstrzykiwanie kodu SQL, wstrzykiwanie
kodu JavaScript — XSS (ang. Cross Site Scripting) oraz
na ataki CSRF (ang. Cross-Site Request Forgery). Wspo-
mniane ataki polegaja na falszowaniu okreslonych zapy-
tan i przekazywaniu ich klientowi w celu uzyskaniu do-
stepu do autoryzowanych zasobow aplikacji. Autorzy
podkreslaja znaczenie wiedzy w zakresie bezpieczenstwa
i zalecajg, by programisci zapoznawali si¢ z wytycznymi,
podatnos$ciami oraz sposobami, w jaki mozna zabezpie-
cza¢ zasoby na poziomie pisania kodu. W zakresie ana-
lizy zagrozen bezpieczenstwa w systemach elektronicz-
nej dokumentacji medycznej EMR (ang. Electronic Me-
dical Record) zbadano podatnos$ci na ataki takie jak XSS,
wstrzykiwanie kodu SQL, ataki CSRF oraz niewystar-
czajaco bezpieczne uwierzytelnianie [4]. Poréwnanie po-
legato na zestawieniu funkcji bezpieczenstwa trzech po-
pularnych frameworkéw jezyka PHP: Laravel, Codelgni-
ter i Symfony. Wyniki wskazuja szkielet programi-
styczny Laravel jako oferujacy najbardziej wszech-
stronne zabezpieczenia wymagane w przypadku tego

rodzaju systemow. Dane, ktore przechowuja, sg szcze-
golnie wrazliwe ze wzgledu na ich charakter, dlatego
wskazane podatnosci majg ogromne znaczenie w kontek-
$cie zabezpieczania aplikacji webowych.

W [5] autor dokonat poréwnania trzech szkieletow
serwerowych ASP.NET MVC 5, Symfony dla PHP oraz
Node.js Express m.in. w zakresie bezpieczenstwa, jednak
wykazuje ono zaledwie podobienstwo polityki bezpie-
czenstwa ASP.NET MVC z ta dotyczaca Symfony. We
wnioskach znalazty si¢ rodzaje aplikacji pod wzgledem
ich dopasowania do poszczeg6lnych szkieletow.

W 2023 pojawit si¢ artykut [6], w ktorym autorzy
wzigli pod uwage projekty typu open-source do analizy
bezpieczenstwa w jezykach Java oraz PHP. Wsrdd testo-
wanych szkieletow programistycznych znalazty si¢: dla
Javy Spring, Play, Spark, Vaadin, Vert.x-Web oraz dla
PHP Symfony, CakePHP, Slim, Laravel, Zend/Laminas.
Badanie wykazato, ze jako te najpopularniejsze, Laravel
oraz Spring pod wzgledem bezpieczenstwa wypadty
stabo w poréwnaniu z Vert.x-Web ze znacznie mniejsza
liczba uzytkownikow. We wnioskach podkreslono zna-
czenie poszerzania wiasnej wiedzy w zakresie bezpie-
czenstwa aplikacji, poniewaz ztozone systemy wymagaja
wigkszej ochrony, ktorej wbudowane zabezpieczenia
moga nie zapewnia¢. Ponadto niezwykle waznym jest
pelne zrozumienie sposobu dziatania danego szkieletu
programistycznego, poniewaz programisci nie mogg cal-
kowicie ufa¢ wbudowanym filtrom.

3. Cel oraz hipotezy badawcze

Celem niniejszej pracy byto wyodr¢bnienie oraz analiza
obecnych zagrozen dotyczacych aplikacji internetowych,
co miato umozliwi¢ poréwnanie wbudowanych zabez-
pieczen w szkieletach programistycznych pod wzgledem
tych najczesciej wystepujacych zagrozen. Badanie miato
na celu identyfikacje luk w bezpieczenstwie, ocen¢ ry-
zyka oraz przedstawienie praktyk na przyktadach wspo-
mnianych technologii. Po zidentyfikowaniu zagrozen zo-
stata przeprowadzona analiza, ktorej wynikiem jest reko-
mendacja umozliwiajaca wybor najbardziej odpowied-
niej technologii pod wzgledem zabezpieczen.

Na potrzeby badan, opierajac si¢ na przegladzie lite-
ratury, zostaty sformutowane nastgpujace hipotezy:
H1: Najgrozniejszymi atakami na aplikacje internetowe
sg te zwigzane z Broken Access Control.
H2: Wykorzystanie frameworkéw internetowych po-
maga zwickszy¢ bezpieczenstwo aplikacji.
H3: Frameworki internetowe oferuja podobny poziom
zabezpieczen, ktory zalezy od sposobu i poprawnosci ich
implementacji.

4. Metodyka badan

Badanie rozpoczgto od przeprowadzenia analizy zagro-
zen, podczas ktorej wyloniono potencjalnie najbardziej
niebezpieczne podatnosci aplikacji internetowych.

4.1. Srodowisko badawcze

Czes$¢ praktyczng eksperymentu przygotowano w opar-
ciu o trzy aplikacje internetowe, kazda z nich napisano
winnym jezyku programowania. Ich kluczowa

464

Journal of Computer Sciences Institute

37 (2025) 463-469

funkcjonalno$¢ stanowita mozliwo$¢ utworzenia pro-

stego blogu internetowego, gdzie uzytkownicy mogliby

dodawac, edytowac oraz usuwaé wilasne posty. Kazda

z tych aplikacji zostata zaimplementowana wedlug na-

stepujacych kryteriow:

e aplikacja musi by¢ rodzaju MVC (ang. Model-View-
Controller),

e aplikacja powinna wykorzystywac silniki szablonow
wiasciwe dla danej technologii,

e struktura bazy danych musi by¢ analogiczna dla
wszystkich aplikacji,

e aplikacja powinna posiada¢ zaimplementowane mo-
duly CRUD (ang. Create Read Update Delete) dla
encji User oraz Post,

e aplikacja powinna posiada¢ zaimplementowany me-
chanizm autoryzacji i autentykacji,

e cze$¢ modutow aplikacji powinno by¢ dostepnych po
uprzednim zalogowaniu przez uzytkownika,

e aplikacja powinna posiada¢ dwa punkty w REST API
wykorzystujace metody GET i POST,

e aplikacja powinna stosowa¢ wbudowane mechani-
zmy bezpieczenstwa wlasciwe dla danego szkieletu
zgodnie z jego dokumentacja.

Zapewnienie jednakowej funkcjonalnosci i ztozonosci

bylo konieczne, aby zapewni¢ miarodajnos¢ testow

i umozliwi¢ zestawienie wynikow ze soba.

Ponadto w celach poréwnawczych zostata przygoto-
wana aplikacja internetowa w czystym jezyku PHP, kto-
rej funkcjonalnosci pozostaly bez zmian, natomiast po-
zbawiono ja zabezpieczen. Utworzenie wspomnianego
systemu bylo konieczne, aby w klarowny sposob przed-
stawi¢ skale btedow i podatnosci, jakie miatyby miejsce,
gdyby nie korzystano z zadnych mechanizméw bezpie-
czenstwa. Technologie uzyte podczas badan przedsta-
wione zostaly w Tabeli 1.

Tabela 1: Technologie uzyte do implementacji aplikacji

Wersia Nazwa Wersja Baza Badane
J szkieletu szkieletu danych moduty
Java 21 Spring Boot 34.1 PSQL Spring
Security
PHP 8.3 Symfony 7.2 PSQL Symfony
Security
Node js Express.js 4212 PSQL Biblioteki
23.5.0 zewnetrzne
PHP 8.3 Brak Brak PSQL Brak

Do implementacji uzyto najnowszych stabilnych wersji
szkieletow (tj. kwiecien 2025). Narzedzia do testow opi-
sano w podrozdziale 4.2. Do wykonania testow uzyto
platforme¢ testowa, tj. komputer stacjonarny, ktorego
szczegotowa specyfikacje umieszczono w Tabeli 2. Do
uruchamiania aplikacji wykorzystane byty domyslne sro-
dowiska dostarczane razem ze szkieletami, czyli dla
Spring uzyto serwera TomCat, dla Symfony i Express byt
to wbudowany serwer, dla PHP serwer Apache. Do pota-
czenia uzyto protokotu HTTPs z wygenerowanymi do-
my$lnymi certyfikatami. Dzigki temu wyeliminowane
zostaly problemy zwigzane z transmisja danych.

Tabela 2: Platforma testowa

Komponent Specyfikacja
Procesor AMD RYZEN 7 9700X
Rozmiar pamigci RAM 32 GB DDRMS
Dysk twardy SSD PCIE 2TB

System operacyjny Windows 11 + Kali Linux

Trudnos$cia zwigzang z testowaniem bezpieczenstwa
stanowit dobor wymiernych metryk, na podstawie kto-
rych mozna by bylo zestawi¢ ze sobg wyniki przebada-
nych aplikacji. Podczas analizy zagrozen wytonione zo-
staly obecne zagrozenia, ktore mozna bylo przetestowaé
w sposob powtarzalny i niezalezny od cztowieka:

e ataki zwigzane z Broken Access Control, czyli nicau-
toryzowany dostep do stron,

e ataki SQL Injection zwigzane z wstrzykiwaniem zlo-
sliwego kodu SQL,

e ataki XSS polegajace na wstrzykiwaniu zto$liwego
kodu JavaScript.

4.2. Narzedzia

By przetestowa¢ podatnosci aplikacji na wymienione za-
grozenia nalezalo wyznaczy¢ odpowiednie oprogramo-
wanie automatyzujace testy dla kazdej kategorii osobno.
Aplikacje zostaty przetestowane pod katem bezpieczen-
stwa w sposob ogblny przy pomocy systemu Burp Suite
Professional. Program ten pomégt w utworzeniu raportu
dotyczacego bledow, podzielonych wedtug stopnia nie-
bezpieczenstwa. Poczatkowo w tym celu planowano wy-
korzysta¢ program OWASP ZAP, jednak podczas testow
probnych zwrocit duza ilos¢ falszywie negatywnych wy-
nikéw, co wymusilo zmiany narzedzia. Do szczegodto-
wych testow podatnosci kazdego z trzech najpilniejszych
zagrozen przydzielono nastepujace narze¢dzia:

e Hydra umozliwiajaca lamanie haset poprzez ataki
stownikowe i Brute Force,

e SQLMap pozwalajagcy wykonywaé wstrzykiwanie
ztosliwego kodu SQL do bazy danych w celu wykra-
dania danych lub ich usuwania dla atakow SQL In-
jection,

e XSSER dajacy mozliwo$¢ wstrzykiwania kodu JS lub
HTML w punkty aplikacji dla atakow XSS.

4.3. Scenariusz testowy

Aplikacje zostaly przetestowane w nastepujacy sposob.
Etap I: Ogblne testy bezpieczenstwa z wykorzystaniem
programu Burp Suite Professional, gdzie wynikiem testu
byta lista btedow podzielonych na kategorie podatnosci.
Etap 2: Testy na podatno$¢ SQL Injection przy pomocy
programu SQL MAP. Test polegat na ataku pigciu wy-
branych miejsc strony internetowej: logowanie (1), reje-
stracja (2), dodanie postu (3), edycja postu (4) oraz edy-
cja uzytkownika (5). Wynikiem testow byta liczba wyko-
nanych atakow oraz znalezionych podatnosci.

Etap 3: Testy na podatno$¢ XSS przy uzyciu programu
XSSER. Badanie przeprowadzone zostato analogicznie
do testow SQL Injection z identycznym strukturg zwra-
canych wynikow.

465

Journal of Computer Sciences Institute

37 (2025) 463-469

Etap 4: Testy podatnosci na ztamanie kontroli dostgpu za
pomoca narzedzia Hydra. Wynikiem bylto zestawienie
liczby prob ztamania dostgpu do liczby skutecznych wta-
man do aplikacji. Testy te przeprowadzono z podziatlem
na dwie kategorie:
1. Wykorzystanie techniki Brute Force, gdzie Hydra
probuje “zgadnaé hasto”.
2. Wrykorzystaniem techniki stownikow z popularnymi
hastami dostgpnymi w zbiorach danych.
Wyniki testow zostaly opracowane i w miar¢ mozliwosci
przekonwertowane do postaci liczbowej, a nastepnie
przedstawione w Tabelach. W rozdziale dotyczacym
analizy wynikdow omowione zostaly rowniez pozostate
cechy szkieletow wplywajace na bezpieczenstwo wraz
z analizg podatnosci szczego6lnych dla danych technolo-
gii. Dodatkowo zamieszczono wnioski i oceny imple-
mentacji aplikacji oraz ich zabezpieczen.

5. Wyniki
5.1. Testy automatyczne

Wyniki pierwszego etapu badan, ktory zaktadat testy au-
tomatyczne bezpieczenstwa aplikacji przedstawiono na
Rysunkach 1 - 4. Tabele przedstawiaja dane z raportow
z Burp. Problemy zostatly sklasyfikowane wedlug statusu
jako Wysoki (kolor czerwony), Sredni (kolor pomaraf-
czowy), Niski (kolor niebieski), /nformacje (kolor szary)
lub Falszywie Pozytywne (kolor zielony). Odzwiercie-
dlaja one prawdopodobny wplyw kazdej kwestii na ty-
powa organizacje. Dodatkowa klasyfikacja przebiega
wedlug pewnosci problemow: Pewne, Silne lub Nie-
pewne (W tabelach rozrézniane nasyceniem koloru dla
danego statusu), ktore z kolei odpowiadaja wiarygodno-
$ci techniki wykorzystanej do identyfikacji problemu.

Rysunek 1 przedstawia wyniki testow aplikacji kon-
trolnej, ktéra nie posiadata zaimplementowanych zabez-
pieczen. Pomimo niskiego stopnia ztozonosci aplikacji,
znaleziono az 37 problemow o wysokim statusie. Byty to
glownie miejsca wrazliwe na ataki XSS i SQL Injection
(po 15 probleméw). Dodatkowo wykryty zostaty pro-
blem z CSD (ang. Client-side Desync). Jest to sytuacja,
w ktorej dane po stronie klienta staja si¢ niespdjne z rze-
czywistym stanem utrzymywanym przez serwer i umoz-
liwia atakujagcemu ominigcie walidacji lub manipulacje
danymi. Ponadto znalezione zostaly problemy z CSRF
(ang. Cross-site Request Forgery) oraz braki szyfrowania
danych po stronie serwera.

Pewnosé
Pewne Silne Niepewne Razem
Wysoki 0 3 37
Sredni 1 1 2
Status Niski 1 0 2
Informacyjne 8 4 44
Fatszywie pozytywne m 0 0 0

Rysunek 1: Raport dla aplikacji PHP.

Na Rysunku 2 mozna zauwazy¢ wyraznie spadek liczby
btedoéw, jednak warto odnotowac, ze nadal wystapily
problemy z wysokim statusem. Znalezione zostaty

podatnosci na ataki XSS. Dodatkowo ponownie wysta-
pity problemy z szyfrowaniem danych (1) oraz braki
CSRF (2).

Pewnosé
Pewne Silne Niepewne Razem
Wysoki 0 2 5
Sredni 0 0 0
Status Niski [IIEN 0 0 1
Informacyjne 8 1 3
Fatszywie pozytywne m 0 0 0

Rysunek 2: Raport dla aplikacji Express.

Na Rysunkach 3 i1 4 zawierajacych wyniki kolejno dla
Symfony i Spring widoczne jest brak btedéw o statusie
wysokim. Jedyne btedy zaklasyfikowane jako powaz-
niejsze to te zwigzane z niezweryfikowanym certyfika-
tem TLS, jednak problem ten dotyczy juz wiasciwych
serwerow niz samych aplikacji. Dodatkowo dla szkieletu
programistycznego Symfony zostal wykryty problem
z mozliwym atakiem typu SSL stripping, umozliwiajacy
komunikacje z aplikacja przy wykorzystaniu niezabez-
pieczonego protokolu HTTP.

Pewnosé
Pewne Silne Niepewne Razem
Wysoki m ﬁ 0 0
Sredni 0 0 1
Status Niski 0 0 1
Informacyjne 14 1 38
Fatszywie pozytywne m 0 0 0
Rysunek 3: Raport dla aplikacji Symfony.
Pewnos¢
Pewne Silne Niepewne Razem
wysoki [IIIE] 0 0 0
Sredni 0 0 1
Status niski [IE] 0 0 0
Informacyjne m 0 0 44
Fatszywie pozytywne m 0 0 0

Rysunek 4: Raport dla aplikacji Spring.

Na Rysunku 5, zaprezentowano zestawienie sumarycz-
nej liczby probleméw dla poszczegdlnych technologii.

Liczba btedéw

0 10 20 30 40
PHP -—
Express e
Symfony B
Spring

mWysoki ®Sredni B Niski

Rysunek 5: Poréwnanie liczby znalezionych probleméw z podziatem
na framework.

5.2. Testy szczegélowe

W drugim etapie badan przeprowadzone zostaly testy
sprawdzajace odporno$¢ aplikacji na konkretne ataki. Na
Rysunku 6 zostaly zaprezentowane wyniki sumaryczne
ilosci znalezionych podatnosci SQL Injection z programu

466

Journal of Computer Sciences Institute

37 (2025) 463-469

SQLMap dla wszystkich 5 punktéw koncowych. Nalezy
wspomniec, ze w aplikacji kontrolnej PHP kazdy z punk-
tow koncowych posiadat podatno$é na atak, a liczba zna-
lezionych luk wynosita od 2 do 3 na kazde badany ele-
ment aplikacji.

15
‘g 14
3, 10 ‘
S
o 5
M IO
3 0
PHP Express Symfony Spring
Szkielet

Rysunek 6: Wyniki testu z programu SQLMap.

Dla danych zebranych z narzgedzia XSSER w etapie trze-
cim, zostal wyliczony procent skutecznych atakow
wedlug wzoru:

21 Si
2Py

AttackFEffectiveness = X 100%)

gdzie S; jest liczba skutecznych atakéw na i punkcie kon-
cowym, P; jest calkowita liczba atakow na i punkt kon-
COWY.

Szczegotowe dane zostaly zaprezentowane w Tabeli
3. Wyniki koficowe sa zaprezentowane na Rysunku 7.

Tabela 3. Szczegdtowe wyniki z programu XSSER

PHP Express Symfony Spring
Nr (Pi) (S) (Pi) (Si) P (S) P (Si)
1 2582 0 2582 0 2582 0 2582 0
2 1291 0 3872 0 3872 0 3872 0
3 2582 1199 2582 104 2582 0 3873 0

4 2582 2346 3873 2565 2582 0 3873 0

5 2582 1251 2582 0 3873 0 3873 0

rHr G2
Express [IZ23%0
Symfony = 0,00%

Szkielet

Spring 0,00%

0% 10% 20% 30% 40% 50%

Procent skutecznych atakow (%)
Rysunek 7. Wyniki testu z programu XSSER.

Ostatni etap badan mial na celu sprawdzenie zabezpie-
czenia logowania na ataki stownikowe (ang. Dictionary
Attack DA) oraz typu Brute Force (BF). Liczba kombi-
nacji ataku DA, jest dlugo$¢ stownika wykorzystywa-
nego do ataku. Do oszacowania wartosci dla ataku BF
wykorzystano wzor dla liczby wariancji z powtorze-
niami. Dtugo$¢ hasta byla stata i rowna 6. W pierwszym
przypadku dla haset ztozonych z matych liter alfabetu

facinskiego liczba kombinacji wynosi 2676, czyli
3,09E+08. Drugi testowany przypadek zakltada wykorzy-
stanie matych i duzych liter oraz cyfr, dajac tacznie 626,
czyli 5,68E+10 mozliwych warto$ci. Szacowany, pesy-
mistyczny czas zlamania hasta zostal pobrany z pro-
gramu Hydra, ktory wylicza go na podstawie $redniej
liczby préb ataku na minute. Koncowe wyniki zostaly za-
prezentowane w Tabeli 4.

Tabela 4. Szczegdtowe wyniki z programu Hydra

i C h
Llczbfi Me- Dhun- zas (h)
kombina- o

- toda gos¢ .
o PHP Express Symfony Spring
1,43E+07 DA 5 20 3700 3700 3700
3,09E+08 BF 6 470 80446 80446 80446
5,68E+10 BF 6 8,1E+04 1,5E+07 1,5E+07 1,5E+07

6. Analiza wynikow
6.1. Testy automatyczne

Zbiorcze dane dla testéw automatycznych przedstawione
na Rysunku 5, pokazuja, ze wykorzystanie szkieletow
programistycznych zdecydowanie obnizylo liczbg bie-
dow aplikacji. Express poprawil bezpieczenstwo aplika-
cji, ale nie zabezpieczyt on aplikacji przed atakami XSS
tak, jak miato to miejsce dla Symfony i Spring Boot. Byto
to prawdopodobnie spowodowane tym, ze silnik szablo-
néw oraz ORM nie czyScilty wynikow zwracanych, co
powodowalo to, ze skrypt byt przekazywany w niezmie-
nionej formie, co umozliwiato poprawne interpretowanie
go przez przegladarke. Stanowi to bardzo powazng luka
bezpieczenstwa. Symfony i Spring Boot wykazaty si¢ do-
brym poziomem bezpieczenstwa, nie znaleziono w nich
btedow. Jedynymi problemami byly niezweryfikowane
certyfikaty TLS.

6.2. Analiza wynikow z programu SQLMAP

Do przeprowadzenia analizy konieczne bylo wyliczenie
procentu skutecznych atakéw w analogiczny sposob do
tego, ktore zostato zaprezentowane w sekcji 5.2. Otrzy-
mane w ten sposob wartosci Srednie zostaty poddane te-
stowi Shapiro-Wilka [7] w celu weryfikacji, czy pocho-
dza one z rozkladu normalnego. Tylko zbior danych
probki kontrolnej wykazat taka wlasciwosé, wiec nale-
zato w nastgpnym kroku skorzysta¢ z testu nieparame-
trycznego Kruskala-Wallisa, umozliwiajacego wskaza-
nia réznic pomiedzy przynajmniej dwiema grupami.
W przeprowadzonym badaniu przyjeto hipoteze zerowa,
zaktadajaca brak istotnych roznic w skutecznosci atakow
miedzy poszczegdlnymi aplikacjami. Natomiast hipoteza
alternatywna dopuszczata istnienie takich roznic przy-
najmniej pomigdzy jedng parag porownywanych grup.
Test ten wykazal istotno$¢ statystyczna, poniewaz p wy-
niosto 0.00035, co jest mniejsze od przyjetego progu
p <0.05 i1 oznacza odrzucenie hipotezy standardowej na
rzecz alternatywnej. W celu identyfikacji istotnych par
roéznigcych sie statystycznie uzyto testu Dunna z po-
prawka Holma, [8] ktory wykorzystywany jest jako test
post-hoc. Wykazat on, ze probka kontrolna PHP

467

Journal of Computer Sciences Institute

37 (2025) 463-469

wykazuje istotnie wyzsza skuteczno$é atakow w porow-
naniu do Express (p = 0.0027), Spring (p = 0.0022) i
Symfony (p =0.0018), natomiast mi¢dzy Express, Spring
i Symfony nie stwierdzono istotnych réznic.

6.3. Analiza wynikow z programu XSSER

Analiza danych zebranych w tym badaniu zostata prze-
prowadzona analogicznie do wynikéw z programu
SQLMap, z ta roéznica, ze wyniki zostaty ograniczone do
punktow koncowych, na ktérych byta mozliwos¢ sku-
tecznego przeprowadzenia ataku XSS, poniewaz nie-
ktére z nich. jak np. login, nie wykazaty podatno$ci na-
wet dla probki kontrolnej. Podczas testu Shapiro-Wilka
ponownie zostala odrzucona hipoteza normalnosci zbio-
réw, wigc ponownie przeprowadzono test Kruskala-Wal-
lisa. Otrzymany wynik wskazuje, Ze istnieja statystycznie
istotne réznice w skutecznos$ci atakow pomigdzy co naj-
mniej dwoma z aplikacji (p = 0.04216 < 0.05). Wyniki
testu Dunna pokazuja, ze po uwzglgdnieniu korekty
Holm Zadna z par grup nie rdzni si¢ statystycznie istotnie
(wszystkie p > 0.05). Najnizsze p-wartosci skorygowane
dotycza porownan PHP vs Spring (p = 0.0986) i PHP vs
Symfony (p = 0.0822), co sugeruje tendencje do roznic,
ale nie przekraczajaca poziomu istotno$ci. Chociaz test
Kruskala-Wallisa wskazat ogdlng réznice miedzy gru-
pami (p = 0.04216), test Dunna nie potwierdzil jedno-
znacznie istotnych réznic migdzy parami. Moze to ozna-
czaé, ze roznice sg subtelne lub probka jest zbyt mata, by
wykaza¢ istotno$¢ w testach parami.

6.4. Analiza wynikow z Hydra

Analiza wykazata, ze badane szkielety pozwalaja na za-
bezpieczenie aplikacji przed atakami na tamanie haset.
Mozliwos¢ konfigurowania ilosci prob i czasu oczekiwa-
nia na ponowne wpisanie hasta, znacznie wydtuza czas
witamania. W testach korzystano ze standardowego usta-
wienia oznaczajacego 5 prob co 5 minut. Hydra przy wy-
korzystaniu 64 watkéw musiata zostaé¢ ograniczona do
wysylania 5 zapytan co 5 minut, co $rednio dawato zale-
dwie 64 proby na minutg. Dla poréwnania aplikacja kon-
trolna umozliwiata wykonanie do 11000 préb na minute.

7. Podsumowanie

Otrzymane wyniki umozliwiaja weryfikacje przyjetych
hipotez badawczych. Hipoteza numer jeden dotyczaca
najgrozniejszych atakow na aplikacje internetowe zwia-
zanych z BAC zostala potwierdzona. Dowodzi tego prze-
glad literatury a w szczego6lnosci raport OWASP, gdzie
problem ten znajduje si¢ na szczycie rankingu.

Podobnie jak hipoteza numer dwa o zwigkszeniu bez-
pieczenstwa aplikacji internetowych poprzez wykorzy-
stanie szkieletow. Analiza poréwnawcza wykazata zni-
welowanie btedow bezpieczenstwa w opartych o nie apli-
kacjach w poréwnaniu do probki kontrolne;.

Natomiast ostatnia hipoteza zostata odrzucona, po-
niewaz szkielet programistyczny Express jako jedyny
z badanych nie oferowal podobnego poziomu zabezpie-
czen, nie zabezpieczajac aplikacji przed atakami XSS.

Posrdéd badanych szkieletow programistycznych naj-
lepiej zabezpieczonymi okazaly si¢ Symfony oraz Spring

Boot. Oba szkielety udostepniajg w opinii autoréw dosyc
dobre mechanizmy wbudowane chronigce bezpieczen-
stwo aplikacji. Nalezy doceni¢ rowniez prostote ich im-
plementacji oraz duze mozliwosci konfiguracyjne da-
nych komponentéw. Programisci moga korzystaé z goto-
wych rozwigzan typu mechanizmy uwierzytelnienia i au-
toryzacji, wsparcie wielu algorytméw szyfrujacych czy
wbudowane w formularze tokeny CSRF. Ponadto umoz-
liwiajag réwniez tatwe dolgczanie dodatkowych funkcji
zwigkszajacych bezpieczenstwo, takich jak logowanie
dwuetapowe czy kontrola logow aplikacji. Umozliwiaja
takze zastosowanie mechanizmu soft-delete, czyli nie-
trwatego usuwania danych z bazy, co pozwala na ich pro-
ste odzyskiwanie. Dodatkowo, mechanizm glosujacych
daje mozliwo$¢ szczegotowego konfigurowania dostepu
do poszczegolnych modutéw aplikacji. Decyzje o przy-
znaniu dostgpu moga by¢ podejmowane na podstawie
ocen wielu niezaleznych komponentow lub klas tzw. —
glosujacych, ktore wspolnie okreslaja, czy uzytkownik
powinien uzyska¢ dostep. Dzigki temu zmniejsza si¢ ry-
zyko falszywie pozytywnej autoryzacji (np. zalogowania
si¢ nieuprawnionej osoby) i wzmacnia ochrone przed
atakami BAC.

Express natomiast, ktory w zalozeniu ma by¢ prostym
i szybkim szkieletem nie udostgpnia jednego gotowego
komponentu, tylko trzeba polega¢ na wielu zewngtrz-
nych bibliotekach od réznych dostawcow oraz nie
wspiera tak dobrej integracji z silnikami szablonow jak
ma to miejsce w Symfony i Spring Boot. Lepszym zasto-
sowaniem dla tego szkieletu jest wystawianie punktow
koncowych API, niz korzystanie z niego do budowy sys-
temu w architekturze monolit MVC.

Przeprowadzone badania stanowia otwarta podstawe
do dalszych prac oraz eksploracji innych mozliwosci ba-
dawczych. W przysztosci istnieje potencjat rozszerzenia
analiz o bardziej zaawansowane aplikacje, charakteryzu-
jace si¢ zwigkszong liczbg punktow koncowych. Dodat-
kowo mozna sprawdzi¢ mechanizmy zabezpieczen w in-
nych szkieletach oraz technologiach tj. np. Django czy
ASP.NET Core, co pozwoli na przeprowadzenie bardziej
szczegotowej 1 precyzyjnej analizy statystycznej uzyska-
nych wynikow.

Literatura

[1] OWASP Top
[10.04.2025].

10:2021, https://owasp.org/Top10/

[2]1 Z.Covié, Threats and Vulnerabilities in Web Applications
and How to Avoid Them, Critical Infrastructure Protection
in the Light of the Armed Conflicts (2024) 93-103,
https://doi.org/10.1007/978-3-031-47990-8 9.

[31 K. Nirmal, B. Janet, R. Kumar, Web Application
Vulnerabilities - The Hacker's Treasure, In International
Conference on Inventive Research in Computing
Applications (2018) 56-62,
http://dx.doi.org/10.1109/ICIRCA.2018.8597221.

[4] J. Adamu, R. Hamzah, M. M. Rosli, Security issues and
framework of electronic medical record: A review,
Bulletin of Electrical Engineering and Informatics (BEEI)
9(2) (2020) 565-572,
https://doi.org/10.11591/eei.v9i2.2064.

468

https://owasp.org/Top10/
https://doi.org/10.1007/978-3-031-47990-8_9
http://dx.doi.org/10.1109/ICIRCA.2018.8597221
https://doi.org/10.11591/eei.v9i2.2064

Journal of Computer Sciences Institute

37 (2025) 463-469

(3]

(6]

(7]

(8]

X. Mao, Comparison between Symfony, ASP.NET MVC,
And Node.js Express for Web Development, Master
thesis, North Dakota State University, Fargo, 2018.

Z. Yin, SUJ Lee, Security Analysis of Web Open-Source
Projects Based on Java and PHP, Electronics 12(12)
(2023) 2618,
https://doi.org/10.3390/electronics12122618.

S. S. Shapiro, M. B. Wilk, An analysis of variance test for
normality (complete samples), Biometrika 52(3/4) (1965)
591-611, https://doi.org/10.2307/2333709.

O. J. Dunn, Multiple comparisons using rank sums,
Technometrics 6(3) (1964) 241-252.
https://doi.org/10.1080/00401706.1964.10490181.

Dokumentacja jezyka programistycznego
https://www.php.net/docs.php, [15.05.2025].

PHP,

[10] Dokumentacja szkieletu programistycznego Symfony,
https://symfony.com/doc/current/index.html,

[15.05.2025].

Dokumentacja szkieletu programistycznego Spring Boot,
https://docs.spring.io/spring-boot/index.html,
[15.05.2025].

(1]

[12] Dokumentacja szkieletu programistycznego Express,

https://devdocs.io/express/, [15.05.2025].

469

https://doi.org/10.3390/electronics12122618
https://doi.org/10.2307/2333709
https://doi.org/10.1080/00401706.1964.10490181
https://www.php.net/docs.php
https://symfony.com/doc/current/index.html
https://docs.spring.io/spring-boot/index.html
https://devdocs.io/express/

