
JCSI 37 (2025) 463–469

Received: 24 June 2025

Accepted: 20 September 2025

463

Analiza aktualnych zagrożeń i zabezpieczeń stosowanych w aplikacjach
internetowych na przykładzie Symfony, Express i Spring Boot
Analysis of current threats and security measures used in web applications

on the example of Symfony, Express, and Spring Boot

Magdalena Kramek*, Karol Mateusz Kurowski

Departament of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The article analyzes the most common threats currently appearing in web applications and compares the built-in security

features of Symfony, Express, and Spring Boot frameworks. The study aimed to identify security gaps, assess their risk,

and then present practices that enable effective protection against attacks. The priority was to create four applications that

were all identical in terms of structure. Tested applications were designed to have built-in security mechanisms from

analyzed threats. The greatest threats currently are Broken Access Control attacks, cryptographic vulnerabilities, and code

injection. The research process was conducted using Burp Suite Professional, SQLMap, XSSER, and Hydra tools. The

results indicate that Symfony and Spring Boot are the best protected against the threats. Additionally, the default Express

skeleton mechanisms do not protect the application from Cross Site Scripting (XSS) attacks.

Keywords: security; Symfony; Express; Spring Boot

Streszczenie

Artykuł obejmuje analizę najczęstszych zagrożeń pojawiających się obecnie w aplikacjach internetowych oraz porówna-
nie zabezpieczeń wbudowanych w szkielety programistyczne Symfony, Express oraz Spring Boot. Badanie miało na celu
zidentyfikowanie luk w bezpieczeństwie, ocenę ich ryzyka, a następnie przedstawienie praktyk umożliwiających sku-
teczną ochronę przed atakami. Priorytetem było stworzenie czterech aplikacji, które będą identyczne pod względem swo-
jej struktury. Testowane aplikacje zostały zaprojektowane w taki sposób, aby posiadały wbudowane zabezpieczenia prze-
ciw analizowanym zagrożeniom. Największe zagrożenie obecnie stanowią ataki typu Broken Access Control, luki kryp-

tograficzne i wstrzykiwanie kodu. Proces badawczy został przeprowadzony z wykorzystaniem narzędzi Burp Suite Pro-
fessional, SQLMap, XSSER oraz Hydra. Otrzymane wyniki wskazują, że najlepiej zabezpieczonymi pod względem wy-
żej wymienionych zagrożeń są Symfony oraz Spring Boot. Ponadto domyślne mechanizmy szkieletu Express nie zabez-

pieczają aplikacji przed atakami Cross Site Scripting (XSS).

Słowa kluczowe: bezpieczeństwo; Symfony; Express; Spring Boot

*Corresponding author

E-mail address: s95453@pollub.edu.pl (M. Kramek)

Published under Creative Common License (CC BY 4.0 Int.)

1. Wstęp

W dobie szerokiego rozwoju technologicznego społe-
czeństwo staje się coraz bardziej zależne od systemów
internetowych. Te stanowią już nieodłączną część ludz-
kiego życia. Aplikacje upraszczają codzienne życie,

umożliwiają ludziom korzystanie z bankowości interne-
towej. Dzięki ich rozwojowi strony rządowe pozwalają
na składanie dokumentów urzędowych poprzez internet.

Obecność mediów społecznościowych oraz platform

streamingowych, które w swoich zamierzeniach mają
dostarczać rozrywki, ostatecznie pochłania ogromną
ilość czasu każdego człowieka.

Wszystkie te aplikacje z pewnością potrafią wiele
ułatwić, jednak należy pamiętać, że ze względu na ich
sposób działania wymuszają na użytkowniku podawanie
jego prywatnych danych. By mógł on w pełni korzystać
z zapewnianych przez nie funkcjonalności, systemy za-

pisują wiele informacji. Wiąże się to z nieodłącznym ry-
zykiem utraty wrażliwych danych. Niebezpieczeństw do-
tyczących korzystania z aplikacji internetowych jednak
jest z dnia na dzień coraz więcej, do czego przyczynia się

m.in. powszechność złośliwych systemów czy ograni-
czona wiedza użytkowników dotyczących bezpieczeń-
stwa. W świetle tych zagrożeń bardzo ważna jest kwestia
zabezpieczeń wbudowanych w aplikacje internetowe.

Implementowanie własnych zabezpieczeń przez ze-
społy programistyczne potrafi być czasochłonne i wyma-
gać specjalistycznej wiedzy z zakresu cyberbezpieczeń-
stwa. Natomiast wiele współczesnych szkieletów progra-
mistycznych udostępnia gotowe moduły, które mogą po-
móc ochronić aplikację na wielu płaszczyznach. Jednak
w zależności od technologii i sposobu implementacji

dane szkielety mogą charakteryzować się różnym pozio-

mem odporności.
Dostępne były nieliczne źródła literatury analizujące

bezpieczeństwo poszczególnych szkieletów [2, 3, 4], jed-

nak nie zostało do tej pory przeprowadzone szczegółowe
badania dotyczące zabezpieczeń w szkieletach Symfony,
Express oraz Spring Boot. Odnalezione pozycje jedynie

pobieżnie przedstawiały kwestie bezpieczeństwa, głów-
nie skupiając się na wydajności poszczególnych szkiele-
tów. Niniejszy artykuł właśnie tym się będzie wyróżniać,
że bezpieczeństwo wskazanych szkieletów zostało

mailto:s95453@pollub.edu.pl

Journal of Computer Sciences Institute 37 (2025) 463-469

464

przetestowane i zweryfikowane. Ze względu na wynik
analizy źródeł zdecydowano się połączyć aspekt badań
zagrożeń z wbudowanymi zabezpieczeniami, by następ-
nie na ich przykładach zebrać cenne wskazówki doty-
czące pracy z danym szkieletem programistycznym.

2. Przegląd literatury

W celu przeprowadzenia wartościowej analizy aktual-
nych zagrożeń, a następnie wykonania szczegółowych
testów bezpieczeństwa wybranych szkieletów programi-
stycznych zapoznano się z dotychczasowymi pozycjami
literatury. Kluczowym źródłem okazał się raport stwo-
rzony przez fundację OWASP (Open Worldwide Appli-
cation Security Project) [https://owasp.org], który przed-
stawia ranking dziesięciu najczęstszych zagrożeń w apli-
kacjach internetowych. Na szczycie klasyfikacji [1] znaj-

dują się ataki z kategorii typu Broken Access Control do-

tyczące nieautoryzowanych dostępów do zasobów sys-
temu. Obejmuje ona m.in. pozyskiwanie dostępu do
wrażliwych informacji, wprowadzanie modyfikacji czy

nawet usuwanie danych lub przeprowadzanie działań
poza zasięgiem dedykowanego użytkownika. Do drugich
w kolejności zagrożeń należą luki kryptograficzne, które
grupują przestarzałe algorytmy mieszające, domyślne
lub zbyt krótkie klucze szyfrujące czy też używanie loso-
wości do celów kryptograficznych. Na trzeciej pozycji

widnieje wstrzykiwanie, które opiera się na przekazywa-
niu np. w polach formularza kodu wydobywającego re-
kordy z bazy danych. W przypadku braku filtrowania po-

zyskiwanych ciągów znaków taka aplikacja nie zapewnia
odpowiedniego bezpieczeństwa danym.

W konferencji Critical Infrastructure Protection in the

Light of the Armed Conflicts znajduje się artykuł [2],
w którym Zlatko Čović dokonał opisu wyżej wymienio-
nych zagrożeń bezpieczeństwa aplikacji webowych. Na
podstawie przykładów przedstawia scenariusze ataków
oraz oferowane rozwiązania ochrony przed tymi zagro-
żeniami, podkreślając znaczenie bezpieczeństwa w co-
dziennym korzystaniu z aplikacji webowych.

W artykule z 2018 roku [3] zaprezentowano badanie

podatności na wstrzykiwanie kodu SQL, wstrzykiwanie
kodu JavaScript – XSS (ang. Cross Site Scripting) oraz

na ataki CSRF (ang. Cross-Site Request Forgery). Wspo-

mniane ataki polegają na fałszowaniu określonych zapy-
tań i przekazywaniu ich klientowi w celu uzyskaniu do-

stępu do autoryzowanych zasobów aplikacji. Autorzy
podkreślają znaczenie wiedzy w zakresie bezpieczeństwa
i zalecają, by programiści zapoznawali się z wytycznymi,
podatnościami oraz sposobami, w jaki można zabezpie-
czać zasoby na poziomie pisania kodu. W zakresie ana-

lizy zagrożeń bezpieczeństwa w systemach elektronicz-
nej dokumentacji medycznej EMR (ang. Electronic Me-

dical Record) zbadano podatności na ataki takie jak XSS,
wstrzykiwanie kodu SQL, ataki CSRF oraz niewystar-

czająco bezpieczne uwierzytelnianie [4]. Porównanie po-
legało na zestawieniu funkcji bezpieczeństwa trzech po-
pularnych frameworków języka PHP: Laravel, CodeIgni-
ter i Symfony. Wyniki wskazują szkielet programi-
styczny Laravel jako oferujący najbardziej wszech-
stronne zabezpieczenia wymagane w przypadku tego

rodzaju systemów. Dane, które przechowują, są szcze-
gólnie wrażliwe ze względu na ich charakter, dlatego
wskazane podatności mają ogromne znaczenie w kontek-

ście zabezpieczania aplikacji webowych.
W [5] autor dokonał porównania trzech szkieletów

serwerowych ASP.NET MVC 5, Symfony dla PHP oraz

Node.js Express m.in. w zakresie bezpieczeństwa, jednak
wykazuje ono zaledwie podobieństwo polityki bezpie-
czeństwa ASP.NET MVC z tą dotyczącą Symfony. We
wnioskach znalazły się rodzaje aplikacji pod względem
ich dopasowania do poszczególnych szkieletów.

W 2023 pojawił się artykuł [6], w którym autorzy
wzięli pod uwagę projekty typu open-source do analizy

bezpieczeństwa w językach Java oraz PHP. Wśród testo-
wanych szkieletów programistycznych znalazły się: dla
Javy Spring, Play, Spark, Vaadin, Vert.x-Web oraz dla

PHP Symfony, CakePHP, Slim, Laravel, Zend/Laminas.

Badanie wykazało, że jako te najpopularniejsze, Laravel

oraz Spring pod względem bezpieczeństwa wypadły
słabo w porównaniu z Vert.x-Web ze znacznie mniejszą
liczbą użytkowników. We wnioskach podkreślono zna-
czenie poszerzania własnej wiedzy w zakresie bezpie-
czeństwa aplikacji, ponieważ złożone systemy wymagają
większej ochrony, której wbudowane zabezpieczenia
mogą nie zapewniać. Ponadto niezwykle ważnym jest
pełne zrozumienie sposobu działania danego szkieletu

programistycznego, ponieważ programiści nie mogą cał-
kowicie ufać wbudowanym filtrom.

3. Cel oraz hipotezy badawcze

 Celem niniejszej pracy było wyodrębnienie oraz analiza
obecnych zagrożeń dotyczących aplikacji internetowych,
co miało umożliwić porównanie wbudowanych zabez-
pieczeń w szkieletach programistycznych pod względem

tych najczęściej występujących zagrożeń. Badanie miało

na celu identyfikację luk w bezpieczeństwie, ocenę ry-
zyka oraz przedstawienie praktyk na przykładach wspo-

mnianych technologii. Po zidentyfikowaniu zagrożeń zo-

stała przeprowadzona analiza, której wynikiem jest reko-

mendacja umożliwiająca wybór najbardziej odpowied-

niej technologii pod względem zabezpieczeń.
Na potrzeby badań, opierając się na przeglądzie lite-

ratury, zostały sformułowane następujące hipotezy:
H1: Najgroźniejszymi atakami na aplikacje internetowe
są te związane z Broken Access Control.
H2: Wykorzystanie frameworków internetowych po-
maga zwiększyć bezpieczeństwo aplikacji.
H3: Frameworki internetowe oferują podobny poziom
zabezpieczeń, który zależy od sposobu i poprawności ich
implementacji.

4. Metodyka badań

Badanie rozpoczęto od przeprowadzenia analizy zagro-
żeń, podczas której wyłoniono potencjalnie najbardziej
niebezpieczne podatności aplikacji internetowych.

4.1. Środowisko badawcze

Część praktyczną eksperymentu przygotowano w opar-
ciu o trzy aplikacje internetowe, każdą z nich napisano

w innym języku programowania. Ich kluczową

Journal of Computer Sciences Institute 37 (2025) 463-469

465

funkcjonalność stanowiła możliwość utworzenia pro-
stego blogu internetowego, gdzie użytkownicy mogliby

dodawać, edytować oraz usuwać własne posty. Każda
z tych aplikacji została zaimplementowana według na-

stępujących kryteriów:
• aplikacja musi być rodzaju MVC (ang. Model-View-

Controller),

• aplikacja powinna wykorzystywać silniki szablonów
właściwe dla danej technologii,

• struktura bazy danych musi być analogiczna dla
wszystkich aplikacji,

• aplikacja powinna posiadać zaimplementowane mo-

duły CRUD (ang. Create Read Update Delete) dla

encji User oraz Post,

• aplikacja powinna posiadać zaimplementowany me-

chanizm autoryzacji i autentykacji,

• część modułów aplikacji powinno być dostępnych po

uprzednim zalogowaniu przez użytkownika,

• aplikacja powinna posiadać dwa punkty w REST API

wykorzystujące metody GET i POST,

• aplikacja powinna stosować wbudowane mechani-

zmy bezpieczeństwa właściwe dla danego szkieletu

zgodnie z jego dokumentacją.
Zapewnienie jednakowej funkcjonalności i złożoności
było konieczne, aby zapewnić miarodajność testów

i umożliwić zestawienie wyników ze sobą.
Ponadto w celach porównawczych została przygoto-

wana aplikacja internetowa w czystym języku PHP, któ-
rej funkcjonalności pozostały bez zmian, natomiast po-
zbawiono ją zabezpieczeń. Utworzenie wspomnianego
systemu było konieczne, aby w klarowny sposób przed-
stawić skalę błędów i podatności, jakie miałyby miejsce,
gdyby nie korzystano z żadnych mechanizmów bezpie-
czeństwa. Technologie użyte podczas badań przedsta-
wione zostały w Tabeli 1.

Tabela 1: Technologie użyte do implementacji aplikacji

Wersja
Nazwa

szkieletu

Wersja

szkieletu

Baza

danych

Badane

moduły

Java 21 Spring Boot 3.4.1 PSQL Spring

Security

PHP 8.3 Symfony 7.2 PSQL Symfony

Security

Node.js

23.5.0

Express.js 4.21.2 PSQL Biblioteki

zewnętrzne

PHP 8.3 Brak Brak PSQL Brak

Do implementacji użyto najnowszych stabilnych wersji
szkieletów (tj. kwiecień 2025). Narzędzia do testów opi-
sano w podrozdziale 4.2. Do wykonania testów użyto

platformę testową, tj. komputer stacjonarny, którego

szczegółową specyfikację umieszczono w Tabeli 2. Do

uruchamiania aplikacji wykorzystane były domyślne śro-
dowiska dostarczane razem ze szkieletami, czyli dla

Spring użyto serwera TomCat, dla Symfony i Express był
to wbudowany serwer, dla PHP serwer Apache. Do połą-
czenia użyto protokołu HTTPs z wygenerowanymi do-
myślnymi certyfikatami. Dzięki temu wyeliminowane
zostały problemy związane z transmisją danych.

Tabela 2: Platforma testowa

Komponent Specyfikacja

Procesor AMD RYZEN 7 9700X

Rozmiar pamięci RAM 32 GB DDRM5

Dysk twardy SSD PCIE 2TB

System operacyjny Windows 11 + Kali Linux

Trudnością związaną z testowaniem bezpieczeństwa
stanowił dobór wymiernych metryk, na podstawie któ-
rych można by było zestawić ze sobą wyniki przebada-

nych aplikacji. Podczas analizy zagrożeń wyłonione zo-
stały obecne zagrożenia, które można było przetestować

w sposób powtarzalny i niezależny od człowieka:
• ataki związane z Broken Access Control, czyli nieau-

toryzowany dostęp do stron,

• ataki SQL Injection związane z wstrzykiwaniem zło-
śliwego kodu SQL,

• ataki XSS polegające na wstrzykiwaniu złośliwego
kodu JavaScript.

4.2. Narzędzia

By przetestować podatności aplikacji na wymienione za-

grożenia należało wyznaczyć odpowiednie oprogramo-
wanie automatyzujące testy dla każdej kategorii osobno.

Aplikacje zostały przetestowane pod kątem bezpieczeń-
stwa w sposób ogólny przy pomocy systemu Burp Suite

Professional. Program ten pomógł w utworzeniu raportu

dotyczącego błędów, podzielonych według stopnia nie-

bezpieczeństwa. Początkowo w tym celu planowano wy-

korzystać program OWASP ZAP, jednak podczas testów
próbnych zwrócił dużą ilość fałszywie negatywnych wy-
ników, co wymusiło zmiany narzędzia. Do szczegóło-
wych testów podatności każdego z trzech najpilniejszych

zagrożeń przydzielono następujące narzędzia:
• Hydra umożliwiająca łamanie haseł poprzez ataki

słownikowe i Brute Force,

• SQLMap pozwalający wykonywać wstrzykiwanie

złośliwego kodu SQL do bazy danych w celu wykra-

dania danych lub ich usuwania dla ataków SQL In-
jection,

• XSSER dający możliwość wstrzykiwania kodu JS lub
HTML w punkty aplikacji dla ataków XSS.

4.3. Scenariusz testowy

Aplikacje zostały przetestowane w następujący sposób.
Etap 1: Ogólne testy bezpieczeństwa z wykorzystaniem
programu Burp Suite Professional, gdzie wynikiem testu

była lista błędów podzielonych na kategorie podatności.
Etap 2: Testy na podatność SQL Injection przy pomocy
programu SQL MAP. Test polegał na ataku pięciu wy-
branych miejsc strony internetowej: logowanie (1), reje-

stracja (2), dodanie postu (3), edycja postu (4) oraz edy-

cja użytkownika (5). Wynikiem testów była liczba wyko-

nanych ataków oraz znalezionych podatności.
Etap 3: Testy na podatność XSS przy użyciu programu
XSSER. Badanie przeprowadzone zostało analogicznie
do testów SQL Injection z identycznym strukturą zwra-
canych wyników.

Journal of Computer Sciences Institute 37 (2025) 463-469

466

Etap 4: Testy podatności na złamanie kontroli dostępu za
pomocą narzędzia Hydra. Wynikiem było zestawienie

liczby prób złamania dostępu do liczby skutecznych wła-
mań do aplikacji. Testy te przeprowadzono z podziałem
na dwie kategorie:

1. Wykorzystanie techniki Brute Force, gdzie Hydra

próbuje “zgadnąć hasło”.
2. Wykorzystaniem techniki słowników z popularnymi

hasłami dostępnymi w zbiorach danych.

Wyniki testów zostały opracowane i w miarę możliwości
przekonwertowane do postaci liczbowej, a następnie
przedstawione w Tabelach. W rozdziale dotyczącym

analizy wyników omówione zostały również pozostałe
cechy szkieletów wpływające na bezpieczeństwo wraz
z analizą podatności szczególnych dla danych technolo-
gii. Dodatkowo zamieszczono wnioski i oceny imple-

mentacji aplikacji oraz ich zabezpieczeń.

5. Wyniki

5.1. Testy automatyczne

Wyniki pierwszego etapu badań, który zakładał testy au-
tomatyczne bezpieczeństwa aplikacji przedstawiono na

Rysunkach 1 - 4. Tabele przedstawiają dane z raportów
z Burp. Problemy zostały sklasyfikowane według statusu

jako Wysoki (kolor czerwony), Średni (kolor pomarań-
czowy), Niski (kolor niebieski), Informacje (kolor szary)

lub Fałszywie Pozytywne (kolor zielony). Odzwiercie-

dlają one prawdopodobny wpływ każdej kwestii na ty-

pową organizację. Dodatkowa klasyfikacja przebiega

według pewności problemów: Pewne, Silne lub Nie-

pewne (w tabelach rozróżniane nasyceniem koloru dla
danego statusu), które z kolei odpowiadają wiarygodno-

ści techniki wykorzystanej do identyfikacji problemu.

Rysunek 1 przedstawia wyniki testów aplikacji kon-
trolnej, która nie posiadała zaimplementowanych zabez-
pieczeń. Pomimo niskiego stopnia złożoności aplikacji,
znaleziono aż 37 problemów o wysokim statusie. Były to
głównie miejsca wrażliwe na ataki XSS i SQL Injection

(po 15 problemów). Dodatkowo wykryty zostały pro-
blem z CSD (ang. Client-side Desync). Jest to sytuacja,

w której dane po stronie klienta stają się niespójne z rze-
czywistym stanem utrzymywanym przez serwer i umoż-
liwia atakującemu ominięcie walidacji lub manipulacje

danymi. Ponadto znalezione zostały problemy z CSRF
(ang. Cross-site Request Forgery) oraz braki szyfrowania

danych po stronie serwera.

Rysunek 1: Raport dla aplikacji PHP.

Na Rysunku 2 można zauważyć wyraźnie spadek liczby

błędów, jednak warto odnotować, że nadal wystąpiły

problemy z wysokim statusem. Znalezione zostały

podatności na ataki XSS. Dodatkowo ponownie wystą-
piły problemy z szyfrowaniem danych (1) oraz braki

CSRF (2).

Rysunek 2: Raport dla aplikacji Express.

Na Rysunkach 3 i 4 zawierających wyniki kolejno dla

Symfony i Spring widoczne jest brak błędów o statusie
wysokim. Jedyne błędy zaklasyfikowane jako poważ-
niejsze to te związane z niezweryfikowanym certyfika-

tem TLS, jednak problem ten dotyczy już właściwych
serwerów niż samych aplikacji. Dodatkowo dla szkieletu

programistycznego Symfony został wykryty problem
z możliwym atakiem typu SSL stripping, umożliwiający
komunikację z aplikacją przy wykorzystaniu niezabez-

pieczonego protokołu HTTP.

Rysunek 3: Raport dla aplikacji Symfony.

Rysunek 4: Raport dla aplikacji Spring.

Na Rysunku 5, zaprezentowano zestawienie sumarycz-

nej liczby problemów dla poszczególnych technologii.

Rysunek 5: Porównanie liczby znalezionych problemów z podziałem

na framework.

5.2. Testy szczegółowe

W drugim etapie badań przeprowadzone zostały testy
sprawdzające odporność aplikacji na konkretne ataki. Na

Rysunku 6 zostały zaprezentowane wyniki sumaryczne

ilości znalezionych podatności SQL Injection z programu

0 10 20 30 40

PHP

Express

Symfony

Spring

Liczba błędów

Wysoki Średni Niski

Journal of Computer Sciences Institute 37 (2025) 463-469

467

SQLMap dla wszystkich 5 punktów końcowych. Należy
wspomnieć, że w aplikacji kontrolnej PHP każdy z punk-

tów końcowych posiadał podatność na atak, a liczba zna-

lezionych luk wynosiła od 2 do 3 na każde badany ele-

ment aplikacji.

Rysunek 6: Wyniki testu z programu SQLMap.

Dla danych zebranych z narzędzia XSSER w etapie trze-

cim, został wyliczony procent skutecznych ataków
według wzoru:
 AttackEffectiveness = ∑ 𝑆𝑖5𝑖=1∑ 𝑃𝑖5𝑖=1 × 100% (1)

gdzie 𝑆𝑖 jest liczbą skutecznych ataków na ⅈ punkcie koń-
cowym, 𝑃𝑖 jest całkowitą liczbą ataków na ⅈ punkt koń-
cowy.

Szczegółowe dane zostały zaprezentowane w Tabeli

3. Wyniki końcowe są zaprezentowane na Rysunku 7.

Tabela 3. Szczegółowe wyniki z programu XSSER

PHP Express Symfony Spring

Nr (Pi) (Si) (Pi) (Si) (Pi) (Si) (Pi) (Si)

1 2582 0 2582 0 2582 0 2582 0

2 1291 0 3872 0 3872 0 3872 0

3 2582 1199 2582 104 2582 0 3873 0

4 2582 2346 3873 2565 2582 0 3873 0

5 2582 1251 2582 0 3873 0 3873 0

Rysunek 7. Wyniki testu z programu XSSER.

Ostatni etap badań miał na celu sprawdzenie zabezpie-
czenia logowania na ataki słownikowe (ang. Dictionary
Attack DA) oraz typu Brute Force (BF). Liczbą kombi-
nacji ataku DA, jest długość słownika wykorzystywa-
nego do ataku. Do oszacowania wartości dla ataku BF

wykorzystano wzór dla liczby wariancji z powtórze-
niami. Długość hasła była stała i równa 6. W pierwszym
przypadku dla haseł złożonych z małych liter alfabetu

łacińskiego liczba kombinacji wynosi 26^6, czyli

3,09E+08. Drugi testowany przypadek zakłada wykorzy-

stanie małych i dużych liter oraz cyfr, dając łącznie 62^6,

czyli 5,68E+10 możliwych wartości. Szacowany, pesy-
mistyczny czas złamania hasła został pobrany z pro-
gramu Hydra, który wylicza go na podstawie średniej
liczby prób ataku na minutę. Końcowe wyniki zostały za-
prezentowane w Tabeli 4.

Tabela 4. Szczegółowe wyniki z programu Hydra

Liczba

kombina-

cji

Me-

toda

Dłu-
gość

Czas (h)

PHP Express Symfony Spring

1,43E+07 DA 5 20 3700 3700 3700

3,09E+08 BF 6 470 80446 80446 80446

5,68E+10 BF 6 8,1E+04 1,5E+07 1,5E+07 1,5E+07

6. Analiza wyników

6.1. Testy automatyczne

Zbiorcze dane dla testów automatycznych przedstawione

na Rysunku 5, pokazują, że wykorzystanie szkieletów
programistycznych zdecydowanie obniżyło liczbę błę-
dów aplikacji. Express poprawił bezpieczeństwo aplika-
cji, ale nie zabezpieczył on aplikacji przed atakami XSS

tak, jak miało to miejsce dla Symfony i Spring Boot. Było
to prawdopodobnie spowodowane tym, że silnik szablo-
nów oraz ORM nie czyściły wyników zwracanych, co
powodowało to, że skrypt był przekazywany w niezmie-

nionej formie, co umożliwiało poprawne interpretowanie
go przez przeglądarkę. Stanowi to bardzo poważną luką
bezpieczeństwa. Symfony i Spring Boot wykazały się do-
brym poziomem bezpieczeństwa, nie znaleziono w nich

błędów. Jedynymi problemami były niezweryfikowane
certyfikaty TLS.

6.2. Analiza wyników z programu SQLMAP

Do przeprowadzenia analizy konieczne było wyliczenie
procentu skutecznych ataków w analogiczny sposób do
tego, które zostało zaprezentowane w sekcji 5.2. Otrzy-

mane w ten sposób wartości średnie zostały poddane te-

stowi Shapiro-Wilka [7] w celu weryfikacji, czy pocho-

dzą one z rozkładu normalnego. Tylko zbiór danych
próbki kontrolnej wykazał taką właściwość, więc nale-
żało w następnym kroku skorzystać z testu nieparame-
trycznego Kruskala-Wallisa, umożliwiającego wskaza-

nia różnic pomiędzy przynajmniej dwiema grupami.
W przeprowadzonym badaniu przyjęto hipotezę zerową,
zakładającą brak istotnych różnic w skuteczności ataków
między poszczególnymi aplikacjami. Natomiast hipoteza

alternatywna dopuszczała istnienie takich różnic przy-
najmniej pomiędzy jedną parą porównywanych grup.
Test ten wykazał istotność statystyczną, ponieważ p wy-

niosło 0.00035, co jest mniejsze od przyjętego progu
p < 0.05 i oznacza odrzucenie hipotezy standardowej na

rzecz alternatywnej. W celu identyfikacji istotnych par

różniących się statystycznie użyto testu Dunna z po-

prawką Holma, [8] który wykorzystywany jest jako test
post-hoc. Wykazał on, że próbka kontrolna PHP

14

0 0 0
0

5

10

15

PHP Express Symfony Spring

Lic
zb

a
bł

ęd
ów

Szkielet

0,00%

0,00%

17,23%

41,28%

0% 10% 20% 30% 40% 50%

Spring

Symfony

Express

PHP

Procent skutecznych ataków (%)

S
zk
ie
le
t

Journal of Computer Sciences Institute 37 (2025) 463-469

468

wykazuje istotnie wyższą skuteczność ataków w porów-
naniu do Express (p = 0.0027), Spring (p = 0.0022) i

Symfony (p = 0.0018), natomiast między Express, Spring
i Symfony nie stwierdzono istotnych różnic.

6.3. Analiza wyników z programu XSSER

Analiza danych zebranych w tym badaniu została prze-
prowadzona analogicznie do wyników z programu

SQLMap, z tą różnicą, że wyniki zostały ograniczone do

punktów końcowych, na których była możliwość sku-
tecznego przeprowadzenia ataku XSS, ponieważ nie-
które z nich. jak np. login, nie wykazały podatności na-
wet dla próbki kontrolnej. Podczas testu Shapiro-Wilka

ponownie została odrzucona hipoteza normalności zbio-
rów, więc ponownie przeprowadzono test Kruskala-Wal-

lisa. Otrzymany wynik wskazuje, że istnieją statystycznie
istotne różnice w skuteczności ataków pomiędzy co naj-
mniej dwoma z aplikacji (p = 0.04216 < 0.05). Wyniki

testu Dunna pokazują, że po uwzględnieniu korekty
Holm żadna z par grup nie różni się statystycznie istotnie
(wszystkie p > 0.05). Najniższe p-wartości skorygowane
dotyczą porównań PHP vs Spring (p = 0.0986) i PHP vs

Symfony (p = 0.0822), co sugeruje tendencję do różnic,
ale nie przekraczającą poziomu istotności. Chociaż test
Kruskala-Wallisa wskazał ogólną różnicę między gru-
pami (p = 0.04216), test Dunna nie potwierdził jedno-
znacznie istotnych różnic między parami. Może to ozna-
czać, że różnice są subtelne lub próbka jest zbyt mała, by
wykazać istotność w testach parami.

6.4. Analiza wyników z Hydra

Analiza wykazała, że badane szkielety pozwalają na za-
bezpieczenie aplikacji przed atakami na łamanie haseł.
Możliwość konfigurowania ilości prób i czasu oczekiwa-
nia na ponowne wpisanie hasła, znacznie wydłuża czas
włamania. W testach korzystano ze standardowego usta-

wienia oznaczającego 5 prób co 5 minut. Hydra przy wy-

korzystaniu 64 wątków musiała zostać ograniczona do
wysyłania 5 zapytań co 5 minut, co średnio dawało zale-
dwie 64 próby na minutę. Dla porównania aplikacja kon-
trolna umożliwiała wykonanie do 11000 prób na minutę.

7. Podsumowanie

Otrzymane wyniki umożliwiają weryfikację przyjętych
hipotez badawczych. Hipoteza numer jeden dotycząca
najgroźniejszych ataków na aplikacje internetowe zwią-
zanych z BAC została potwierdzona. Dowodzi tego prze-

gląd literatury a w szczególności raport OWASP, gdzie

problem ten znajduje się na szczycie rankingu.
Podobnie jak hipoteza numer dwa o zwiększeniu bez-

pieczeństwa aplikacji internetowych poprzez wykorzy-

stanie szkieletów. Analiza porównawcza wykazała zni-
welowanie błędów bezpieczeństwa w opartych o nie apli-

kacjach w porównaniu do próbki kontrolnej.
Natomiast ostatnia hipoteza została odrzucona, po-

nieważ szkielet programistyczny Express jako jedyny

z badanych nie oferował podobnego poziomu zabezpie-

czeń, nie zabezpieczając aplikacji przed atakami XSS.
Pośród badanych szkieletów programistycznych naj-

lepiej zabezpieczonymi okazały się Symfony oraz Spring

Boot. Oba szkielety udostępniają w opinii autorów dosyć
dobre mechanizmy wbudowane chroniące bezpieczeń-
stwo aplikacji. Należy docenić również prostotę ich im-
plementacji oraz duże możliwości konfiguracyjne da-
nych komponentów. Programiści mogą korzystać z goto-
wych rozwiązań typu mechanizmy uwierzytelnienia i au-

toryzacji, wsparcie wielu algorytmów szyfrujących czy

wbudowane w formularze tokeny CSRF. Ponadto umoż-
liwiają również łatwe dołączanie dodatkowych funkcji
zwiększających bezpieczeństwo, takich jak logowanie
dwuetapowe czy kontrola logów aplikacji. Umożliwiają
także zastosowanie mechanizmu soft-delete, czyli nie-

trwałego usuwania danych z bazy, co pozwala na ich pro-

ste odzyskiwanie. Dodatkowo, mechanizm głosujących
daje możliwość szczegółowego konfigurowania dostępu
do poszczególnych modułów aplikacji. Decyzje o przy-

znaniu dostępu mogą być podejmowane na podstawie
ocen wielu niezależnych komponentów lub klas tzw. –

głosujących, które wspólnie określają, czy użytkownik
powinien uzyskać dostęp. Dzięki temu zmniejsza się ry-
zyko fałszywie pozytywnej autoryzacji (np. zalogowania
się nieuprawnionej osoby) i wzmacnia ochronę przed
atakami BAC.

Express natomiast, który w założeniu ma być prostym
i szybkim szkieletem nie udostępnia jednego gotowego
komponentu, tylko trzeba polegać na wielu zewnętrz-
nych bibliotekach od różnych dostawców oraz nie
wspiera tak dobrej integracji z silnikami szablonów jak
ma to miejsce w Symfony i Spring Boot. Lepszym zasto-

sowaniem dla tego szkieletu jest wystawianie punktów
końcowych API, niż korzystanie z niego do budowy sys-
temu w architekturze monolit MVC.

Przeprowadzone badania stanowią otwartą podstawę
do dalszych prac oraz eksploracji innych możliwości ba-
dawczych. W przyszłości istnieje potencjał rozszerzenia
analiz o bardziej zaawansowane aplikacje, charakteryzu-

jące się zwiększoną liczbą punktów końcowych. Dodat-

kowo można sprawdzić mechanizmy zabezpieczeń w in-

nych szkieletach oraz technologiach tj. np. Django czy

ASP.NET Core, co pozwoli na przeprowadzenie bardziej

szczegółowej i precyzyjnej analizy statystycznej uzyska-
nych wyników.

Literatura

[1] OWASP Top 10:2021, https://owasp.org/Top10/,

[10.04.2025].

[2] Z. Čović, Threats and Vulnerabilities in Web Applications
and How to Avoid Them, Critical Infrastructure Protection

in the Light of the Armed Conflicts (2024) 93-103,

https://doi.org/10.1007/978-3-031-47990-8_9.

[3] K. Nirmal, B. Janet, R. Kumar, Web Application

Vulnerabilities - The Hacker's Treasure, In International

Conference on Inventive Research in Computing

Applications (2018) 56-62,

http://dx.doi.org/10.1109/ICIRCA.2018.8597221.

[4] J. Adamu, R. Hamzah, M. M. Rosli, Security issues and

framework of electronic medical record: A review,

Bulletin of Electrical Engineering and Informatics (BEEI)

9(2) (2020) 565-572,

https://doi.org/10.11591/eei.v9i2.2064.

https://owasp.org/Top10/
https://doi.org/10.1007/978-3-031-47990-8_9
http://dx.doi.org/10.1109/ICIRCA.2018.8597221
https://doi.org/10.11591/eei.v9i2.2064

Journal of Computer Sciences Institute 37 (2025) 463-469

469

[5] X. Mao, Comparison between Symfony, ASP.NET MVC,

And Node.js Express for Web Development, Master

thesis, North Dakota State University, Fargo, 2018.

[6] Z. Yin, SUJ Lee, Security Analysis of Web Open-Source

Projects Based on Java and PHP, Electronics 12(12)

(2023) 2618,

https://doi.org/10.3390/electronics12122618.

[7] S. S. Shapiro, M. B. Wilk, An analysis of variance test for

normality (complete samples), Biometrika 52(3/4) (1965)

591–611, https://doi.org/10.2307/2333709.

[8] O. J. Dunn, Multiple comparisons using rank sums,

Technometrics 6(3) (1964) 241–252.

https://doi.org/10.1080/00401706.1964.10490181.

[9] Dokumentacja języka programistycznego PHP,
https://www.php.net/docs.php, [15.05.2025].

[10] Dokumentacja szkieletu programistycznego Symfony,

https://symfony.com/doc/current/index.html,

[15.05.2025].

[11] Dokumentacja szkieletu programistycznego Spring Boot,

https://docs.spring.io/spring-boot/index.html,

[15.05.2025].

[12] Dokumentacja szkieletu programistycznego Express,

https://devdocs.io/express/, [15.05.2025].

https://doi.org/10.3390/electronics12122618
https://doi.org/10.2307/2333709
https://doi.org/10.1080/00401706.1964.10490181
https://www.php.net/docs.php
https://symfony.com/doc/current/index.html
https://docs.spring.io/spring-boot/index.html
https://devdocs.io/express/

