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Abstract 

Identifying and cataloguing cultural heritage objects is a time consuming process that requires expert knowledge. This 

study explores the application of deep learning models, specifically YOLOv8 and ResNet50, to classify historic buildings 

by historical epoch and country of origin, respectively. This research was conducted using a dataset of 3,200 images, 

which featured monuments categorized into four separate historical periods and representing four distinct nations. 

YOLOv8 detected buildings and classified them into historical epochs while ResNet50 was used for classifying the coun-

try of origin. The analysis demonstrated that models achieved a notable degree of effectiveness in identifying both the 

architectural epochs and the countries of origin. 
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Streszczenie 

Identyfikacja i katalogowanie obiektów dziedzictwa kulturowego to czasochłonny proces wymagający specjalistycznej 
wiedzy. Niniejsze badanie dotyczy zastosowania modeli głębokiego uczenia, a konkretnie YOLOv8 i ResNet50, do kla-
syfikacji zabytkowych budynków według epoki historycznej i kraju pochodzenia. Badania przeprowadzono na zbiorze 
danych zawierającym około 3200 obrazów przedstawiających zabytki podzielone na cztery odrębne okresy historyczne i 
reprezentujące cztery różne kraje. Model YOLOv8 wykrywał budynki i klasyfikował je według epok historycznych, na-
tomiast model ResNet50 służył do klasyfikacji kraju pochodzenia. Analiza wykazała, że modele osiągnęły znaczący sto-
pień skuteczności w identyfikacji zarówno epok architektonicznych, jak i krajów pochodzenia. 
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1. Introduction 

The process of identifying and cataloging cultural herit-

age objects in most cases requires specialized knowledge 

and often the analysis itself is time-consuming. These 

processes are essential and enable preservation and a bet-

ter understanding of humanity’s past. The advancing dig-

itization of cultural monuments leads to an increase in the 

amount of digital data, which in turn creates a need for 

efficient methods that allow automation of the classifica-

tion. In recent years machine learning techniques like 

deep neural networks have seen significant development. 

They were an important step in the development of com-

puter vision field. These models have achieved high effi-

ciency in the tasks of object recognition and classification 

while outperforming previous algorithms. The applica-

tion of machine learning in the analysis of cultural herit-

age opens new possibilities for automating cataloging 

processes and identifying their origin. This article aims 

to see if the application of machine learning can be ap-

plied to the classification of symbols on cultural monu-

ments to identify their origin and historical era. A break-

through in image recognition came with representation 

learning, which, as noted in [1], allows machines to au-

tomatically discover features from raw data, unlike older 

models that required manually designed filters. 

Traditional machine learning methods often required 

converting images into one-dimensional vectors, which, 

as indicated in comparative analyses [2], led to the loss 

of spatial information. Modern methods, explored in [1] 

among others, learn hierarchical representations, where 

higher layers amplify relevant aspects of the input data 

[1]. Even in deep approaches, as noted in texture classi-

fication studies [3], feature selection remains crucial, alt-

hough Convolutional Neural Networks (CNNs) can learn 

them automatically. CNNs have become the foundation 

of deep learning in computer vision. Their architecture, 

as described in reviews such as [4], consists of convolu-

tional layers performing convolution operations using 

learning filters [4] and pooling layers reducing the di-

mensions of feature maps [4]. Deep CNNs effectively 

capture features at various levels of abstraction [3], inte-

grating them in a comprehensive manner from input to 

output, which is a characteristic feature of multilayer ar-

chitectures, as highlighted in [5] and [6]. In object detec-

tion, the development of CNNs has led to the emergence 

of effective architectures, divided into single-stage and 

two-stage methods, which has been identified as a funda-

mental division in works such as [7]. Two-stage methods, 

exemplified by region-based Convolutional Neural Net-

works (R-CNN) [8], first generate regions of interest 
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(RoI) – which, as indicated by research [9], is the first 

stage of these detectors – and then make predictions. In 

contrast, single-stage detectors, popularized by YOLO, 

formulate the problem as regression to bounding boxes 

and class probabilities [10], analyzing all spatial pro-

posals at once, as summarized in [9]. In image classifica-

tion, VGG architectures, as discussed with respect to cul-

tural heritage in [11], utilize small filter sizes for efficient 

information extraction. Subsequently, the use of 1x1 con-

volutions to impose dimensionality reduction prior to 

more expensive operations, as introduced in [8], makes it 

possible to realize deeper and broader networks [8]. The 

development encompasses attention mechanisms, a good 

example of this being the Residual Attention Network 

that creates features for the important regions of the im-

age using attention modules. The deep neural network 

model effectiveness is sometimes enhanced using the 

process of transfer learning, as described in [12] as the 

procedure of pre-training a model within a large dataset 

and then fine-tuning. The practical aspects of this pro-

cess, including the initialization of new layers, are de-

scribed in studies on, for example, fruit detection [13]. 

The process of feature map extraction and manipulation 

is crucial here, as highlighted in the analysis of the evo-

lution of YOLO models [14]. This approach has been 

successfully applied, among others, in the classification 

of cultural heritage images [11]. However, as research on 

data augmentation [15] indicates, these models depend 

on large data sets to avoid overfitting [15]. For this pur-

pose, augmentation techniques are used, e.g., random ro-

tations [15], and, as noted in [16], data normalization for 

input standardization. Evaluating model performance is 

crucial, and image recognition is one of the most im-

portant fields of computer vision, as confirmed by [17]. 

Evaluation standards and datasets such as the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) 

[18] play an important role here. Various metrics are used 

in these competitions, e.g., top-5 accuracy [18]. To eval-

uate the trade-off between precision and sensitivity in de-

tection, as indicated in the review of YOLO architectures 

[19], the Average Precision (AP) index based on the pre-

cision-recall curve is used. The literature review confirms 

significant progress in the field of automatic image anal-

ysis, driven by the development of deep neural networks, 

including convolutional architectures (CNN). Key ap-

proaches to object detection, such as models from the 

YOLO family, and image classification, where ResNet 

architectures stand out, have been identified. The im-

portance of supporting techniques, such as transfer learn-

ing and data augmentation, which are particularly valua-

ble in the context of specialized datasets such as cultural 

heritage images, has also been discussed. Established 

evaluation methods and available benchmarks allow for 

an objective assessment of the developed solutions. To 

provide the research with the appropriate context, this 

study focuses on four periods: Romanesque, Gothic, Re-

naissance, and Baroque. Each of these periods is charac-

terized by a distinct visual language, whose influences 

were transnational in nature. The selection of France, It-

aly, Spain, and Poland as the geographical area made it 

possible to gather a rich and diverse set of data. The scope 

of the study, as defined above, ensures that the symbols 

and styles analyzed are representative of typical cultural 

heritage sites throughout the European Union, which in-

creases the potential for practical application of the ob-

tained results. All this information allowed to formulate 

the following thesis and hypotheses. Thesis: The use of 

the YOLOv8 and ResNet50 models to analyze symbols 

found on cultural monuments allows for the effective 

classification of their country of origin and historical era. 

H1. Detection of cultural symbols using the YOLOv8 

model achieves an F1-score effectiveness of 80% in clas-

sifying historical eras. 

H2. Classification of cultural symbols using the Res-

Net50 model achieves an F1-score effectiveness of 80% 

in classifying historical eras. 

2. Materials and methods 

The study used defined data sets, environment configu-

ration, and experimental procedures, which were de-

scribed in detail at each stage of the work, from data col-

lection to model training and evaluation. The study was 

based on a collection of approximately 3,200 images of 

historic buildings. The selection of images was based on 

the possibility of determining the historical era and coun-

try of origin based on reliable sources. Buildings charac-

terized by complexity and richness symbolism were se-

lected, as they constituted suitable material for analysis 

using machine learning. Care was taken to ensure that the 

dataset evenly represented the four historical periods an-

alyzed (Romanesque, Gothic, Ba-roque, Renaissance) 

and the four countries of origin (Poland, Spain, France, 

Italy) in order to minimize the risk of model bias. Each 

image was assigned to a single era and a single country. 

The preparation of data for model training was conducted 

in two ways. For the YOLOv8 model, responsible for 

building detection and epoch classification, each image 

was assigned a bound-ing box around the object and a 

label corresponding to one of four historical epochs; the 

annotation process was carried out using the Roboflow 

platform. For the ResNet50 model, which classifies the 

country of origin, the photos were manually organized 

into a folder structure, where the name of each folder cor-

responded to one of four countries; each folder dedicated 

to a given country contained approximately 800 photos. 

The prepared datasets were divided into training, valida-

tion, and test subsets. For the YOLOv8 model, the divi-

sion ratios were 80% training data, 13% validation data, 

and 7% test data, respectively. For the ResNet50 model, 

the division was 70% training data, 15% validation data, 

and 15% test data. During the division, the proportions of 

classes in each subset were maintained. The research was 

conducted on a workstation equipped with the hardware 

shown in Table 1. 
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Table 1: Hardware Specification 

Category Description 

processor 
11th Gen Intel(R) Core(TM) i7-

11700K @3.60GHz 

Graphics card NVIDIA GeForce RTX 3070 

RAM 32GB DDR4 3200MHz 

Disk drive SSD NVMe 1 TB 

OS Windows 10 Education 64-bit 

 

For the YOLOv8 model (yolov8s version, pre-

trained), the following hyperparameters were used: initial 

learning rate (lr0) 0.01, final learning rate (lrf) also 0.01 

(the learning rate decreased to 1% of the initial value), 

batch size 16 and 50 training epochs. Warm-up epochs 

were also used, the input image size was set to 640x640 

pixels, the momentum coefficient to 0.937, and weight 

regularization. Mosaic augmentation was disabled for the 

last 10 training epochs.  

For the ResNet50 model (pre-trained on ImageNet), 

the following parameters were configured: batch size 16, 

learning rates 0.001 for the new classifier layer and 

0.0001 for the unlocked ‘layer4’ layers, weight decay 
0.0001. A learning rate scheduler (Scheduler LR) was 

used, reducing the value by a factor of 0.1 every 7 epochs, 

and an Adam optimizer. The number of epochs was set 

to 50, with an early stopping mechanism with a patience 

of 10. Cross-entropy was selected as the loss function, 

and gradient clipping was set to 1.0. Dropout rates of 

30% and 20% were applied to the respective layers in the 

new classification module. The ResNet50 modification 

consisted of replacing the last classifica-tion layer with a 

new module consisting of the following sequence: Drop-

out layer, linear layer with ReLU activation, another lin-

ear layer. The initial layers of the Res-Net50 model were 

frozen during training.  

The overall course of the experiment included stages 

from data collection, through its preliminary processing 

and categorization, division into sets, implementation, 

and training of YOLOv8 and ResNet50 models, to eval-

uation and interpretation of results. The collected images 

were first checked for damage; defective files were de-

leted. They were then assigned country and era labels. 

The resolution of the images was standardized: for 

YOLOv8 to 640x640 pixels, and for ResNet50, random 

cropping from 256 to 224 pixels was used. For the 

YOLOv8 model, horizontal reflection and mosaic aug-

mentation were used (excluding the last 10 epochs). For 

the ResNet50 model, a wider set of transformations was 

used, including random horizontal reflection (50% prob-

ability), random vertical reflection (20% probabil-ity), 

random image rotations (maximum rotation angle 15 de-

grees, Color Jitter image property modifications (change 

in brightness, contrast, saturation in the range [0.7, 1.3] 

and hue in the range [-0.1, 0.1]), random per-spective 

change (50% probability) and random conver-sion to 

grayscale (10% probability). For the ResNet50 model, Z-

score normalization was used, transforming pixel values 

so that their mean was zero and their standard deviation 

was one.  

The training process followed the iterative meth-od 

with GPU acceleration through the CUDA architec-ture. 

Progress with the training process was tracked with loss 

functions and metrics for accuracy. The model for Res-

Net50 implemented early stopping with a patience of 10 

epochs to avoid the occurrence of over-fitting. Each of 

the models was trained ten times for 50 epochs and the 

model with the top performance against the validation set 

chosen for further inspection. The trained models were 

finally evaluated for separate test sets to which the 

trained models had access for the first time. Performance 

metrics like mAP (for varied IoU thresh-olds) were used 

for the YOLOv8 model. For the two models and for Res-

Net50 for the classification task, metrics like accuracy, 

precision, sensitivity, F1-score, and error matrix were 

used. 

3. Results 

The experiments provided data on the effectiveness of the 

YOLOv8 and ResNet50 models in analyzing cultural rel-

ics. The models were trained according to the previously 

described procedure, implementing ten repetitions of 50 

epochs for each model and selecting the best variant. The 

performance of the YOLOv8 model in the task of detect-

ing monuments and classifying historical epochs was de-

termined using the metric of average precision (mAP). 

After 50 epochs of training, the model achieved a mAP50 

value (for an Intersection over Union (IoU) threshold of 

0.5) of 0.873. For a range of IoU thresholds from 0.5 to 

0.95 (mAP50-95), the average precision was 0.689. 

 

 

Figure 1: Confusion matrix for YOLOv8 model. 

The diagonal of the matrix (Figure 1) represents cor-

rectly classified cases. For the Baroque period, 146 paint-

ings were correctly classified, for the Gothic period 134, 

for the Renaissance period 142, and for the Romanesque 

period 138. The values outside the diagonal indicate in-

correct classifications. For example, for the Baroque 

class, 12 instances were incorrectly assigned to Gothic, 

10 to Renaissance, 3 to Romanesque, and 22 to back-

ground. Based on the data from the error matrix, preci-

sion, sensitivity, and F1-score indicators were calculated. 
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Table 2: Classification metrics for YOLOv8 model 

Epoch Precision Recall F1-score 

Baroque 0.85 0.91 0.88 

Gothic 0.90 0.88 0.89 

Renaissance 0.90 0.92 0.91 

Romanesque 0.97 0.90 0.93 

Aver-

age(macro) 

0.90 0.90 0.90 

 

The highest F1-score was recorded for the Rom-

anesque period and reached the value of 0.93 whilst Pre-

cision was at 0.97 (Table 2). The next highest F1-score 

was noted for Renaissance epoch followed by gothic era 

where the value was 0.89. Baroque era achieved the 

worst result amounting to F1-score at 0.88 and precision 

at 0.85. The average macro values for precision, sensitiv-

ity, and F1-score were 0.90. On the precision-Recall 

curve (Figure 2), the average precision for styles was: 

0.857 for Baroque, 0.845 for Gothic, 0.861 for Renais-

sance, and 0.930 for Romanesque. The average precision 

averaged at an IoU threshold of 0.5 is 0.873. The Rom-

anesque style achieved the highest performance. 

 

 

 

Figure 2: Precision-Recall Curve for YOLOv8 model. 

 

 

 
 

Figure 3: Average Precision for YOLOv8 model on validation set. 

The mAP@0.5 on the validation set (Figure 3), after 

initial volatility and a phase of rapid growth up to approx-

imately 0.83 in epoch 15, stabilizes at a high level, oscil-

lating between 0.86 and 0.88, ending training with a 

value of approximately 0.875.  

 

Table 3: Classification metrics for ResNet50 model 

Class Precision Recall F1-Score Support 

France 0.89 0.72 0.80 119 

Spain 0.85 0.80 0.82 120 

Poland 0.91 0.94 0.93 123 

Italy 0.73 0.88 0.80 119 

Macro Avg 0.84 0.84 0.84 481 

Weighted 

Avg 
0.85 0.84 0.84 481 

 

The ResNet50 model was used for the task of classi-

fying the country of origin of historic buildings coming 

from four countries:  

• France. 

• Spain. 

• Poland.  

• Italy.  

This model achieved an overall accuracy of 84% on 

the test set. A detailed classification report is presented 

in Table 3. The model achieved the highest F1-score 0.93 

for the Poland class with precision 0.91, recall at 0.94. 

For the Spain class, the F1-score was 0.82. The France 

and Italy classes the recorded value was 0.80. The macro 

average for the F1 score was 0.84. The effectiveness of 

country classification by the ResNet50 model is visual-

ized by the error matrix. 

 

 

 
Figure 4: Confusion matrix for ResNet50 model. 

 

Analysis of the confusion matrix (Figure 4) shows 

that the model correctly classified 86 instances for 

France, 96 for Spain, 116 for Poland, and 105 for Italy. 

These counts directly correspond to the recall values for 

each class, derived from the normalized confusion ma-

trix, which were 0.72 for France, 0.80 for Spain, 0.94 for 

Poland, and 0.88 for Italy, respectively. 
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Figure 5: Precision-Recall Curve for ResNet50 model. 

 

The highest AP value 0.98 was obtained for the Po-

land class. The France and Spain classes obtained an AP 

of 0.91, while for the Italy class, the AP was 0.90. The 

loss function on the training set decreases rapidly in the 

first epochs, reaching values close to 0.2 in the final 

epochs. The loss function on the validation set also de-

creases in the initial epochs, then shows greater fluctua-

tions. The accuracy of the training set increases rapidly, 

reaching values close to 0.95 in the final epochs. The ac-

curacy on the validation set increases, oscillating around 

0.80-0.85 in the later phase of training. 

 

 

Figure 6: Example predictions of architectural epochs by the YOLOv8 

model on validation images. 

4. Discussion 

The YOLOv8 model, used for the detection and classifi-

cation of historical periods, achieved a high level of ef-

fectiveness, with an average mAP50 precision of 0.873. 

These results demonstrate the model's good overall abil-

ity to correctly locate objects. An analysis of the classifi-

cation of eras, which are based on metrics from Table 1 

showed that the Romanesque style achieved the highest 

F1-score of 0.93. This may be due to the fact that the vis-

ual representations of this era are like each other while 

still distinctive compared to other styles analyzed. This 

might made it easier for model to learn and recognize 

them. Confusion matrix revealed that the model tended 

to confuse classifications between eras such as Baroque, 

Gothic and Renaissance. These mistakes can be the prod-

uct of historical style connections or regional architec-

tural differences that obfuscate definite style lines and 

make classification problematic. Performance curves like 

Precision-Recall (Figure 2) further demonstrate the 

model’s high capacity to classify individual periods 

properly. The trajectory of the loss function and metrics 

of validation, and the milestone of reaching a score of 

about 0.875 for the measure of mAP@0.5 in the valida-

tion set, indicates that this is a good and stable learning 

process with no evident symptoms of severe overfitting 

in the case of the primary detection metrics. In the coun-

try-of-origin classification task, the ResNet50 model 

achieved an overall accuracy of 0.84 on the test set. A 

detailed classification report (Table 3) that the highest 

F1-score 0.93 was obtained for Poland. As in the case of 

the Romanesque style for YOLOv8, this may be due to 

the presence of more distinctive or less diverse features 

of Polish architecture in the analyzed dataset, which 

made it easier for the model to learn. Analysis of the error 

matrix showed that the most common classification er-

rors involved confusing French architecture with Italian 

and Spanish architecture, as well as Spanish architecture 

with Italian architecture. The course of the Res-Net50 

model training process revealed rapid improvement on 

the training set. However, the stabilization and even a 

slight increase in validation loss observed while the train-

ing loss continued to decrease in later epochs may sug-

gest a certain degree of model overfitting. 

5. Conclusions 

From the conducted research and analysis of the obtained 

results, conclusions as elaborated below are drawn. The 

achieved metrics of the YOLOv8 model, with the aver-

age macro F1-score of 0.90 for the classification of his-

torical periods, confirm hypotheses H1. Similarly, the 

ResNet50 model, with an average macro F1-score and 

precision of 0.84 in classifying the country of origin con-

firmed hypothesis H2. Both models show good perfor-

mance in their tasks, but there is room for improvement. 

The models were trained on relatively small dataset 

which opens possibility for further research using bigger 

dataset, which could improve generalization and accu-

racy. Research could also include a larger number of 

newer models and more advanced augmentation tech-

niques. 
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