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The use of machine learning to classify symbols on cultural monuments to
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Abstract

Identifying and cataloguing cultural heritage objects is a time consuming process that requires expert knowledge. This
study explores the application of deep learning models, specifically YOLOvS and ResNet50, to classify historic buildings
by historical epoch and country of origin, respectively. This research was conducted using a dataset of 3,200 images,
which featured monuments categorized into four separate historical periods and representing four distinct nations.
YOLOVS detected buildings and classified them into historical epochs while ResNet50 was used for classifying the coun-
try of origin. The analysis demonstrated that models achieved a notable degree of effectiveness in identifying both the
architectural epochs and the countries of origin.
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Streszczenie

Identyfikacja i katalogowanie obiektow dziedzictwa kulturowego to czasochtonny proces wymagajacy specjalistyczne;j
wiedzy. Niniejsze badanie dotyczy zastosowania modeli glebokiego uczenia, a konkretnie YOLOv8 i ResNet50, do kla-
syfikacji zabytkowych budynkéw wedtug epoki historycznej i kraju pochodzenia. Badania przeprowadzono na zbiorze
danych zawierajagcym okoto 3200 obrazow przedstawiajacych zabytki podzielone na cztery odrebne okresy historyczne i
reprezentujace cztery rozne kraje. Model YOLOvVS wykrywat budynki i klasyfikowat je wedtug epok historycznych, na-
tomiast model ResNet50 stuzyt do klasyfikacji kraju pochodzenia. Analiza wykazata, Zze modele osiggnety znaczacy sto-
pien skutecznos$ci w identyfikacji zarowno epok architektonicznych, jak i krajow pochodzenia.
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1. Introduction Traditional machine learning methods often required
converting images into one-dimensional vectors, which,
as indicated in comparative analyses [2], led to the loss
of spatial information. Modern methods, explored in [1]
among others, learn hierarchical representations, where
higher layers amplify relevant aspects of the input data
[1]. Even in deep approaches, as noted in texture classi-
fication studies [3], feature selection remains crucial, alt-
hough Convolutional Neural Networks (CNNs) can learn
them automatically. CNNs have become the foundation
of deep learning in computer vision. Their architecture,
as described in reviews such as [4], consists of convolu-
tional layers performing convolution operations using
learning filters [4] and pooling layers reducing the di-
mensions of feature maps [4]. Deep CNNs effectively
capture features at various levels of abstraction [3], inte-
grating them in a comprehensive manner from input to
output, which is a characteristic feature of multilayer ar-
chitectures, as highlighted in [5] and [6]. In object detec-
tion, the development of CNNs has led to the emergence
of effective architectures, divided into single-stage and
two-stage methods, which has been identified as a funda-
mental division in works such as [7]. Two-stage methods,
exemplified by region-based Convolutional Neural Net-
works (R-CNN) [8], first generate regions of interest

The process of identifying and cataloging cultural herit-
age objects in most cases requires specialized knowledge
and often the analysis itself is time-consuming. These
processes are essential and enable preservation and a bet-
ter understanding of humanity’s past. The advancing dig-
itization of cultural monuments leads to an increase in the
amount of digital data, which in turn creates a need for
efficient methods that allow automation of the classifica-
tion. In recent years machine learning techniques like
deep neural networks have seen significant development.
They were an important step in the development of com-
puter vision field. These models have achieved high effi-
ciency in the tasks of object recognition and classification
while outperforming previous algorithms. The applica-
tion of machine learning in the analysis of cultural herit-
age opens new possibilities for automating cataloging
processes and identifying their origin. This article aims
to see if the application of machine learning can be ap-
plied to the classification of symbols on cultural monu-
ments to identify their origin and historical era. A break-
through in image recognition came with representation
learning, which, as noted in [1], allows machines to au-
tomatically discover features from raw data, unlike older
models that required manually designed filters.
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(Rol) — which, as indicated by research [9], is the first
stage of these detectors — and then make predictions. In
contrast, single-stage detectors, popularized by YOLO,
formulate the problem as regression to bounding boxes
and class probabilities [10], analyzing all spatial pro-
posals at once, as summarized in [9]. In image classifica-
tion, VGG architectures, as discussed with respect to cul-
tural heritage in [11], utilize small filter sizes for efficient
information extraction. Subsequently, the use of 1x1 con-
volutions to impose dimensionality reduction prior to
more expensive operations, as introduced in [8], makes it
possible to realize deeper and broader networks [8]. The
development encompasses attention mechanisms, a good
example of this being the Residual Attention Network
that creates features for the important regions of the im-
age using attention modules. The deep neural network
model effectiveness is sometimes enhanced using the
process of transfer learning, as described in [12] as the
procedure of pre-training a model within a large dataset
and then fine-tuning. The practical aspects of this pro-
cess, including the initialization of new layers, are de-
scribed in studies on, for example, fruit detection [13].
The process of feature map extraction and manipulation
is crucial here, as highlighted in the analysis of the evo-
lution of YOLO models [14]. This approach has been
successfully applied, among others, in the classification
of cultural heritage images [11]. However, as research on
data augmentation [15] indicates, these models depend
on large data sets to avoid overfitting [15]. For this pur-
pose, augmentation techniques are used, e.g., random ro-
tations [15], and, as noted in [16], data normalization for
input standardization. Evaluating model performance is
crucial, and image recognition is one of the most im-
portant fields of computer vision, as confirmed by [17].
Evaluation standards and datasets such as the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC)
[18] play an important role here. Various metrics are used
in these competitions, e.g., top-5 accuracy [18]. To eval-
uate the trade-off between precision and sensitivity in de-
tection, as indicated in the review of YOLO architectures
[19], the Average Precision (AP) index based on the pre-
cision-recall curve is used. The literature review confirms
significant progress in the field of automatic image anal-
ysis, driven by the development of deep neural networks,
including convolutional architectures (CNN). Key ap-
proaches to object detection, such as models from the
YOLO family, and image classification, where ResNet
architectures stand out, have been identified. The im-
portance of supporting techniques, such as transfer learn-
ing and data augmentation, which are particularly valua-
ble in the context of specialized datasets such as cultural
heritage images, has also been discussed. Established
evaluation methods and available benchmarks allow for
an objective assessment of the developed solutions. To
provide the research with the appropriate context, this
study focuses on four periods: Romanesque, Gothic, Re-
naissance, and Baroque. Each of these periods is charac-
terized by a distinct visual language, whose influences
were transnational in nature. The selection of France, It-
aly, Spain, and Poland as the geographical area made it

possible to gather a rich and diverse set of data. The scope
of the study, as defined above, ensures that the symbols
and styles analyzed are representative of typical cultural
heritage sites throughout the European Union, which in-
creases the potential for practical application of the ob-
tained results. All this information allowed to formulate
the following thesis and hypotheses. Thesis: The use of
the YOLOv8 and ResNet50 models to analyze symbols
found on cultural monuments allows for the effective
classification of their country of origin and historical era.
HI1. Detection of cultural symbols using the YOLOVS
model achieves an F1-score effectiveness of 80% in clas-
sifying historical eras.

H2. Classification of cultural symbols using the Res-
Net50 model achieves an F1-score effectiveness of 80%
in classifying historical eras.

2. Materials and methods

The study used defined data sets, environment configu-
ration, and experimental procedures, which were de-
scribed in detail at each stage of the work, from data col-
lection to model training and evaluation. The study was
based on a collection of approximately 3,200 images of
historic buildings. The selection of images was based on
the possibility of determining the historical era and coun-
try of origin based on reliable sources. Buildings charac-
terized by complexity and richness symbolism were se-
lected, as they constituted suitable material for analysis
using machine learning. Care was taken to ensure that the
dataset evenly represented the four historical periods an-
alyzed (Romanesque, Gothic, Ba-roque, Renaissance)
and the four countries of origin (Poland, Spain, France,
Italy) in order to minimize the risk of model bias. Each
image was assigned to a single era and a single country.
The preparation of data for model training was conducted
in two ways. For the YOLOv8 model, responsible for
building detection and epoch classification, each image
was assigned a bound-ing box around the object and a
label corresponding to one of four historical epochs; the
annotation process was carried out using the Roboflow
platform. For the ResNet50 model, which classifies the
country of origin, the photos were manually organized
into a folder structure, where the name of each folder cor-
responded to one of four countries; each folder dedicated
to a given country contained approximately 800 photos.
The prepared datasets were divided into training, valida-
tion, and test subsets. For the YOLOv8 model, the divi-
sion ratios were 80% training data, 13% validation data,
and 7% test data, respectively. For the ResNet50 model,
the division was 70% training data, 15% validation data,
and 15% test data. During the division, the proportions of
classes in each subset were maintained. The research was
conducted on a workstation equipped with the hardware
shown in Table 1.
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Table 1: Hardware Specification

Category Description
11" Gen Intel(R) Core(TM) i7-
processor 11700K @3.60GHz
Graphics card NVIDIA GeForce RTX 3070
RAM 32GB DDR4 3200MHz
Disk drive SSD NVMe 1 TB
oS Windows 10 Education 64-bit

For the YOLOvVS model (yolov8s version, pre-
trained), the following hyperparameters were used: initial
learning rate (Ir0) 0.01, final learning rate (Irf) also 0.01
(the learning rate decreased to 1% of the initial value),
batch size 16 and 50 training epochs. Warm-up epochs
were also used, the input image size was set to 640x640
pixels, the momentum coefficient to 0.937, and weight
regularization. Mosaic augmentation was disabled for the
last 10 training epochs.

For the ResNet50 model (pre-trained on ImageNet),
the following parameters were configured: batch size 16,
learning rates 0.001 for the new classifier layer and
0.0001 for the unlocked ‘layer4’ layers, weight decay
0.0001. A learning rate scheduler (Scheduler LR) was
used, reducing the value by a factor of 0.1 every 7 epochs,
and an Adam optimizer. The number of epochs was set
to 50, with an early stopping mechanism with a patience
of 10. Cross-entropy was selected as the loss function,
and gradient clipping was set to 1.0. Dropout rates of
30% and 20% were applied to the respective layers in the
new classification module. The ResNet50 modification
consisted of replacing the last classifica-tion layer with a
new module consisting of the following sequence: Drop-
out layer, linear layer with ReLU activation, another lin-
ear layer. The initial layers of the Res-Net50 model were
frozen during training.

The overall course of the experiment included stages
from data collection, through its preliminary processing
and categorization, division into sets, implementation,
and training of YOLOvS8 and ResNet50 models, to eval-
uation and interpretation of results. The collected images
were first checked for damage; defective files were de-
leted. They were then assigned country and era labels.
The resolution of the images was standardized: for
YOLOVS to 640x640 pixels, and for ResNet50, random
cropping from 256 to 224 pixels was used. For the
YOLOvVS8 model, horizontal reflection and mosaic aug-
mentation were used (excluding the last 10 epochs). For
the ResNet50 model, a wider set of transformations was
used, including random horizontal reflection (50% prob-
ability), random vertical reflection (20% probabil-ity),
random image rotations (maximum rotation angle 15 de-
grees, Color Jitter image property modifications (change
in brightness, contrast, saturation in the range [0.7, 1.3]
and hue in the range [-0.1, 0.1]), random per-spective
change (50% probability) and random conver-sion to
grayscale (10% probability). For the ResNet50 model, Z-
score normalization was used, transforming pixel values
so that their mean was zero and their standard deviation
was one.

The training process followed the iterative meth-od
with GPU acceleration through the CUDA architec-ture.
Progress with the training process was tracked with loss
functions and metrics for accuracy. The model for Res-
Net50 implemented early stopping with a patience of 10
epochs to avoid the occurrence of over-fitting. Each of
the models was trained ten times for 50 epochs and the
model with the top performance against the validation set
chosen for further inspection. The trained models were
finally evaluated for separate test sets to which the
trained models had access for the first time. Performance
metrics like mAP (for varied IoU thresh-olds) were used
for the YOLOVS model. For the two models and for Res-
Net50 for the classification task, metrics like accuracy,
precision, sensitivity, Fl-score, and error matrix were
used.

3. Results

The experiments provided data on the effectiveness of the
YOLOVS and ResNet50 models in analyzing cultural rel-
ics. The models were trained according to the previously
described procedure, implementing ten repetitions of 50
epochs for each model and selecting the best variant. The
performance of the YOLOvS8 model in the task of detect-
ing monuments and classifying historical epochs was de-
termined using the metric of average precision (mAP).
After 50 epochs of training, the model achieved a mAP50
value (for an Intersection over Union (IoU) threshold of
0.5) of 0.873. For a range of IoU thresholds from 0.5 to
0.95 (mAP50-95), the average precision was 0.689.
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Figure 1: Confusion matrix for YOLOv8 model.

The diagonal of the matrix (Figure 1) represents cor-
rectly classified cases. For the Baroque period, 146 paint-
ings were correctly classified, for the Gothic period 134,
for the Renaissance period 142, and for the Romanesque
period 138. The values outside the diagonal indicate in-
correct classifications. For example, for the Baroque
class, 12 instances were incorrectly assigned to Gothic,
10 to Renaissance, 3 to Romanesque, and 22 to back-
ground. Based on the data from the error matrix, preci-
sion, sensitivity, and F1-score indicators were calculated.
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Table 2: Classification metrics for YOLOvV8 model

Table 3: Classification metrics for ResNet50 model

Epoch Precision Recall Fl-score Class Precision  Recall  F1-Score  Support
Baroque 0.85 0.91 0.88 France 0.89 0.72 0.80 119
Gothic 0.90 0.88 0.89 Spain 0.85 0.30 0.82 120
Renaissance 0.90 0.92 0.91 Poland 0.91 0.94 0.93 123
Romanesque 0.97 0.90 0.93 = “ali‘ 8-;3 8§i 822 }ulg?
Aver- 0.90 0.90 0.90 \;Zi“’hte;g ‘ : :
age(macro) A%/g 0.85 0.84 0.84 481

The highest Fl-score was recorded for the Rom-
anesque period and reached the value of 0.93 whilst Pre-
cision was at 0.97 (Table 2). The next highest F1-score
was noted for Renaissance epoch followed by gothic era
where the value was 0.89. Baroque era achieved the
worst result amounting to F1-score at 0.88 and precision
at 0.85. The average macro values for precision, sensitiv-
ity, and Fl-score were 0.90. On the precision-Recall
curve (Figure 2), the average precision for styles was:
0.857 for Baroque, 0.845 for Gothic, 0.861 for Renais-
sance, and 0.930 for Romanesque. The average precision
averaged at an IoU threshold of 0.5 is 0.873. The Rom-
anesque style achieved the highest performance.
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Figure 2: Precision-Recall Curve for YOLOVS model.
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Figure 3: Average Precision for YOLOvS model on validation set.

The mAP@0.5 on the validation set (Figure 3), after
initial volatility and a phase of rapid growth up to approx-
imately 0.83 in epoch 15, stabilizes at a high level, oscil-
lating between 0.86 and 0.88, ending training with a
value of approximately 0.875.

m— all classes 0.873 MAP@0.5

The ResNet50 model was used for the task of classi-
fying the country of origin of historic buildings coming
from four countries:

e France.
e Spain.
e Poland.
o Jtaly.

This model achieved an overall accuracy of 84% on
the test set. A detailed classification report is presented
in Table 3. The model achieved the highest F1-score 0.93
for the Poland class with precision 0.91, recall at 0.94.
For the Spain class, the F1-score was 0.82. The France
and Italy classes the recorded value was 0.80. The macro
average for the F1 score was 0.84. The effectiveness of
country classification by the ResNet50 model is visual-
ized by the error matrix.
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Figure 4: Confusion matrix for ResNet50 model.

Analysis of the confusion matrix (Figure 4) shows
that the model correctly classified 86 instances for
France, 96 for Spain, 116 for Poland, and 105 for Italy.
These counts directly correspond to the recall values for
each class, derived from the normalized confusion ma-
trix, which were 0.72 for France, 0.80 for Spain, 0.94 for
Poland, and 0.88 for Italy, respectively.
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Figure 5: Precision-Recall Curve for ResNet50 model.

The highest AP value 0.98 was obtained for the Po-
land class. The France and Spain classes obtained an AP
of 0.91, while for the Italy class, the AP was 0.90. The
loss function on the training set decreases rapidly in the
first epochs, reaching values close to 0.2 in the final
epochs. The loss function on the validation set also de-
creases in the initial epochs, then shows greater fluctua-
tions. The accuracy of the training set increases rapidly,
reaching values close to 0.95 in the final epochs. The ac-
curacy on the validation set increases, oscillating around
0.80-0.85 in the later phase of training.

Figure 6: Example predictions of architectural epochs by the YOLOVS
model on validation images.

4. Discussion

The YOLOvVS model, used for the detection and classifi-
cation of historical periods, achieved a high level of ef-
fectiveness, with an average mAPS50 precision of 0.873.
These results demonstrate the model's good overall abil-
ity to correctly locate objects. An analysis of the classifi-
cation of eras, which are based on metrics from Table 1
showed that the Romanesque style achieved the highest
F1-score of 0.93. This may be due to the fact that the vis-
ual representations of this era are like each other while

still distinctive compared to other styles analyzed. This
might made it easier for model to learn and recognize
them. Confusion matrix revealed that the model tended
to confuse classifications between eras such as Baroque,
Gothic and Renaissance. These mistakes can be the prod-
uct of historical style connections or regional architec-
tural differences that obfuscate definite style lines and
make classification problematic. Performance curves like
Precision-Recall (Figure 2) further demonstrate the
model’s high capacity to classify individual periods
properly. The trajectory of the loss function and metrics
of validation, and the milestone of reaching a score of
about 0.875 for the measure of mAP@0.5 in the valida-
tion set, indicates that this is a good and stable learning
process with no evident symptoms of severe overfitting
in the case of the primary detection metrics. In the coun-
try-of-origin classification task, the ResNet50 model
achieved an overall accuracy of 0.84 on the test set. A
detailed classification report (Table 3) that the highest
F1-score 0.93 was obtained for Poland. As in the case of
the Romanesque style for YOLOVS, this may be due to
the presence of more distinctive or less diverse features
of Polish architecture in the analyzed dataset, which
made it easier for the model to learn. Analysis of the error
matrix showed that the most common classification er-
rors involved confusing French architecture with Italian
and Spanish architecture, as well as Spanish architecture
with Italian architecture. The course of the Res-Net50
model training process revealed rapid improvement on
the training set. However, the stabilization and even a
slight increase in validation loss observed while the train-
ing loss continued to decrease in later epochs may sug-
gest a certain degree of model overfitting.

5. Conclusions

From the conducted research and analysis of the obtained
results, conclusions as elaborated below are drawn. The
achieved metrics of the YOLOv8 model, with the aver-
age macro Fl-score of 0.90 for the classification of his-
torical periods, confirm hypotheses H1. Similarly, the
ResNet50 model, with an average macro F1-score and
precision of 0.84 in classifying the country of origin con-
firmed hypothesis H2. Both models show good perfor-
mance in their tasks, but there is room for improvement.
The models were trained on relatively small dataset
which opens possibility for further research using bigger
dataset, which could improve generalization and accu-
racy. Research could also include a larger number of
newer models and more advanced augmentation tech-
niques.
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