JCSI 37 (2025) 484491
JOU NAL Received: 5 July 2025

COMPUTER SCIENCES INSTITUTE Accepted: 7 September 2025

Comparative Performance Analysis of Spring Boot and Quarkus
Frameworks in Java Applications

Analiza poréwnawcza szkieletow Spring Boot 1 Quarkus pod katem
wydajnosci aplikacji Java
Grzegorz Szymanek*, Jakub Smotka

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The paper presents comparative performance characterization of two Java application development frameworks, Spring
Boot and Quarkus. A representative reference application was implemented using both frameworks to enable such a
comparison. The study entailed measurements in terms of multiple metrics, including compilation time, initialization time
for an application, final file sizes, CPU and RAM consumption, latency in HTTP response, throughput, and efficiency of
database queries. Tests were run on both JAR and native image versions with varying loads. Results convincingly showed
the benefits of native Quarkus in startup performance and resource utilization. Spring Boot is still a proven option with a
broader tooling universe supporting it, though. This research gives interesting input to decide on the best technology for
modern Java applications.

Keywords: Java; Spring Boot; Quarkus

Streszczenie

Artykut przedstawia porownawcza charakterystyke wydajnosci dwoch szkieletow programistycznych do tworzenia apli-
kacji w jezyku Java: Spring Boot i Quarkus. W celu umozliwienia takiego porownania zaimplementowano reprezenta-
tywna aplikacje referencyjng w obu technologiach. Badanie obejmowato pomiary w réznych aspektach, takich jak czas
kompilacji, czas inicjalizacji aplikacji, rozmiar pliku wynikowego, zuzycie CPU i pamigci RAM, opdznienie w odpowie-
dzi HTTP, przepustowos¢ oraz efektywnos$¢ zapytan do bazy danych. Testy przeprowadzono zaréwno dla wersji JAR,
jak 1 obrazu natywnego, przy réznych poziomach obcigzenia. Wyniki jednoznacznie wskazaly na zalety natywnego Qu-
arkusa pod wzgledem szybkosci uruchamiania i efektywnosci wykorzystania zasobéw. Mimo to Spring Boot pozostaje
sprawdzonym rozwigzaniem, wspieranym przez szerszy ekosystem narz¢dziowy. Niniejsze badanie dostarcza cennych
wskazowek przy wyborze odpowiedniej technologii dla nowoczesnych aplikacji Java.

Stowa kluczowe: Java; Spring Boot; Quarkus

*Corresponding author
Email address: 95587 @pollub.edu.pl (G. Szymanek)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction native images through GraalVM, significantly enhancing
resource consumption and execution speed, are Quarkus'

The development of information technologies, along main features

with the increasingly high demands of users for web ap-

plications, has placed software performance as an in- 1.1. The aim and object of the research
creasingly critical concern. In business settings and high-
demand programs, the responsiveness of applications, ef-
fective use of resources, and flexibility in deployment are
of utmost importance. In such a situation, the proper de-
velopment tools and frameworks for creating web appli-
cations are crucial.

Java, one of the main drivers in the evolution of in-
formation systems over the years, relies on a number of
frameworks that support the development of micro-
services architecture based applications. Among the lead-
ing and most popular solutions is Spring Boot, a stable
and feature rich framework with a rich ecosystem of li-
braries and tools. In the context of evolving requirements
such as startup time reduction and memory performance
enhancement in containerized applications, a new frame-
work has been introduced: Quarkus, which is "Super-
sonic Subatomic Java" tailored for the cloud age. Low
application startup times and the capacity to generate

The primary objective of this study is to conduct an anal-

ysis and comparison of the performance metrics of

Spring Boot and Quarkus frameworks in the aspect of de-

veloping contemporary Java based web applications. The

analysis encompasses measuring the values of diverse
technical parameters, including startup time, memory and

CPU utilization, latency of HTTP responses, throughput,

and data manipulation operation efficiency in JAR based

and GraalVM native environments. From a literature re-
view of recent research, the following hypotheses have
been formulated:

e Quarkus supports faster application startup time and
reduced resource consumption by way of native com-
pilation through GraalVM than Spring Boot,

o though Spring Boot shows greater memory consump-
tion and longer setup, it exhibits greater stability

484

mailto:s95587@pollub.edu.pl

Journal of Computer Sciences Institute

37 (2025) 484-491

during operation, which makes it a well known choice
for big enterprise systems with long-term support,

e Quarkus has shorter HTTP response times than
Spring Boot.

1.2. Literature Review

Numerous benchmarks have compared modern Java
frameworks for their performance, startup time, and suit-
ability to cloud native architectures. Of these, Spring
Boot and Quarkus are two of the most widely bench-
marked technologies.

A number of benchmarks have demonstrated that
Quarkus has better runtime performance in the context of
initialization time, memory consumption, and processor
overhead—especially when compiled to native images
via GraalVM [1-3]. All these make it extremely well
suited to be utilized in serverless and containerized envi-
ronments. Spring Boot, on the other hand, continues to
exhibit better robustness under high loads as well as in
sophisticated application configurations [4-6].

The porting of legacy microservices to the Quarkus
framework has exhibited considerable reduction in de-
ployment time and CPU utilization but can be associated
with higher memory consumption [5]. Spring Boot, on
the other hand, remains the first choice in enterprise do-
mains, i.e., finance and government, because of its ma-
tured ecosystem and enormous capabilities for integra-
tion and configuration [7-9].

They are both heavily used for IoT and microservice
designs. Research attests to the prowess of Quarkus in
light weight deployments due to its minimal resource
footprint, making it ideal for sensor networks and edge
computing [2], [10]. Spring Boot remains a suitable con-
tender due to its rich support for distributed systems and
reliability for long running services [11].

Spring Boot is defined by its large testing framework,
including tools such as JUnit, Mockito, and SpringRun-
ner that enable comprehensive unit, integration, and sys-
tem testing [12]. The use of these tools results in better
software quality and reduced development time. An ap-
plication based on Spring Boot required less code, indi-
cating the advantages of its rich ecosystem and built in
dependencies [13]. On the other hand, while Quarkus
shows high performance, it may require more manual
configuration in testing scenarios.

A study that included execution efficiency showed
that Spring based applications consumed more energy
and executed slower than applications that were built
without using the framework. This was mainly due to re-
flection based runtime processing [14]. Although Spring
increases developer productivity, it may not be optimally
suited for energy limited environments.

Quarkus has also experimented with virtual threads as
a third option to both blocking and reactive paradigms.
Findings indicate that virtual threads can enhance trans-
parency and simplicity of development but may be af-
fected by higher garbage collection pressures under
heavy loads [15]. Reactive paradigms, especially as real-
ized in Spring Boot and Quarkus, always perform better

than conventional threading models in scenarios with in-
tensive I/O operations [16].

While Play Framework would be more performant in
light, lowload applications, Spring Framework outper-
forms it when system complexity and user concurrency
are greater [17]. In modeling business process fullstack
applications, Spring Boot was compared with emerging
stacks and is still competitive in medium scale scenar-
ios [18].

Spring Boot's utilization along with other abstraction
layers for the database, such as MyBatis and Hibernate,
contributes to its performance overall. It has been discov-
ered that certain combinations offer higher reliability and
better speed, especially those involving caching mecha-
nisms [19].

Several assessments highlighted the strong market
position of Spring Boot. It has been heavily used in criti-
cal sectors like finance, healthcare, where the need for
security, scalability, and multithreading support is top
priority [7], [8]. In contrast, Quarkus, being newer, is in-
creasingly popular because of its cloud native foundation
and ability to scale effectively with minimal resources
(11, 3].

In general, Quarkus performs better, more efficiently,
and is more compatible with current cloud environments,
particularly when it's natively compiled. Spring Boot,
however, is still the most widely used option of large
scale enterprise applications due to its reliability, mature
ecosystem, and established tooling. It all hinges on the
particular needs of the application, such as deployment
environment, performance limitations, and developers'
skillset, to prefer one over the other [20].

2. Research Methodology

This chapter presents the research methodology followed
to assess and compare the performance of the Spring
Boot and Quarkus frameworks. The chapter defines the
aim and scope of the research, test environment setup,
experimental application design, performance test sce-
narios, and data collection and analysis techniques.

2.1. Research Objective and Scope

The main objective of this study is to conduct a compar-
ative analysis of the performance of two most widely uti-
lized Java based web application frameworks: Spring
Boot and Quarkus. The comparison is based on an assess-
ment of the performance of the two frameworks in the
development and execution of the same e-commerce ap-
plication, such as the management of orders, categories,
and products.

To enable a fair comparison, both frameworks were
tested in two run modes: the standard Java Archive (JAR)
run mode and a native executable created with Graal VM.
Having the comparison done in two modes enables the
examination of not just the intrinsic performance traits
but also the impact of native compilation on system re-
source utilization and application responsiveness.

2.2. Testing Environment

To try to maintain consistency and minimize the impact
of external variables that may impact the outcomes, all of

485

Journal of Computer Sciences Institute

37 (2025) 484-491

the experiments were run on a single laptop in a con-
trolled lab. The laptop was running Windows 11 Educa-
tion (64-bit) and served as the only environment for de-
velopment, execution, and monitoring of both applica-
tion versions during the research. This environment was
chosen to simulate a common developer workstation
while having a reproducible environment for Spring Boot
and Quarkus application performance measurement.

Table 1: Computer specification

Component Specification
Processor AMD Ryzen 7 8845HS
5.1 GHz, 8 cores, 16 threads
RAM 32 GB DDRS
Graphics Card Nvidia RTX 4070 8GB
Storage 1 TB SSD
Operating System Windows 11

Table 1 shows the key specifications of the test lap-
top, including the processor, memory, operating system,
and storage configuration. All software tools and frame-
works used by the experiments were executed natively on
the host platform without virtualization, except for spe-
cifically containerized tests executed with Docker.

2.3. Application Design and Technology Stack

The application under test is a sample online shopping
system with mocked product management, categories,
and orders from customers. It was purposely designed to
be a typical CRUD based business application and in-
cludes both read intensive and write intensive operations.
This allowed performance testing across a broad spec-
trum of backend workloads. Figure 1 presents the rela-
tional database schema used by the application.

order

category
order_id BIGINT
category_id BIGINT
customer_name VARCHAR
name VARCHAR
customer_email VARCHAR
description VARCHAR
total_amount NUMERIC
created_at TIMESTAMP
product
product_id BIGINT
order_item description VARCHAR
order_item_id BIGINT price NUMERIC
product_id BIGINT quantity INT
order_id BIGINT category_id BIGINT
quantity INT
price NUMERIC

Figure 1: Relational database schema used in the tested application.

In order to ensure objective comparability, applica-
tion logic, database schema, and functionality were
standardized in both implementations, one Spring Boot
based and the other Quarkus based. Both versions have
the same RESTful endpoints and work against the same

PostgreSQL relational database. Table 2 presents com-
plete technology stack used in both implementations.

Table 2: Technology stack used in both Spring Boot and Quarkus

implementations
Component Version
Java 21
Maven 3.99
Gradle 8.13
Spring Boot 344
Quarkus 3.19.1
GraalVM 21
PostgreSQL 17.0
Docker 27.4.0

2.4. Test Scenarios and Performance Evaluation
Approach

In order to comprehensively compare the performance of
the applications built, several test scenarios were con-
structed to simulate real world workloads characteristic
of CRUD based e-commerce web applications. The test-
ing process involved the measurement of efficiency of
both frameworks (Quarkus and Spring Boot) in various
operational scenarios with standard metrics and monitor-
ing tools (Grafana K6 and Prometheus). The assessment
covered the following key areas:

1. Build performance: A comparison of the average
compilation time using Maven and Gradle in both
frameworks.

2. Startup performance: Native executable and JAR-
based versions' application startup time measurement.

3. Artifact size comparison: Comparison of sizes of JAR
files generated, native binaries, and Docker image
sizes.

4. Database access performance: Measurement of the
average time to read from and write to PostgreSQL
database for specified load parameters.

5. Request performance testing:

e GET requests — included three levels of
complexity: the light load phase loads 15
categories and 1,000 products. The medium
load handles 20 categories and 2,000 prod-
ucts. The heavy load runs an aggregation
query to fetch the top 10 products based on
15,000 orders and 80,000 order items.

e POST requests - creation of new orders con-
taining multiple items and related stock up-
dates,

e DELETE requests - removal of products by
ID, utilized for data cleanup simulation or
admin activities,

e PUT requestes - update records of existing
products to match data changes,

486

Journal of Computer Sciences Institute

37 (2025) 484-491

e MIX requests - are a composite scenario that
utilizes a series of POST, GET, PUT and
DELETE requests, thereby covering the end
to end lifecycle of a resource.
6. Resource usage: Monitoring CPU usage and RAM
usage when executing tests.

All load tests based on HTTP were executed with k6,
an open source performance testing tool. All scenarios
were tested with three loads of users: 50, 500, and 1000
virtual users (VUs), with a fixed test duration of 2
minutes per iteration. These settings allowed response
stability and throughput to be assessed against increasing
levels of concurrency.

Further, resource consumption tests, specifically
CPU and RAM usage, were also carried out as stress
tests, which ran in 5 minute intervals, with two provided
loads: 100 virtual users (VUs) and 1000 virtual users
(VUs). These tests gave valuable insight into the long-
term efficiency and scalability of each framework under
continuous stress.

Behavior and resource metrics of applications were
gathered by Prometheus and subsequently monitored by
Grafana, enabling real time system performance monitor-
ing with precision.

3. Results and Analysis

This chapter presents the findings derived from all exper-
imental tests in this research. The measurements address
various performance dimensions, such as construction
time, initialization latency, resource utilization, request
processing effectiveness, and database operations. The
findings are organized by test type with a short analysis
following every group of findings to point out important
patterns of performance.

3.1. Build and Startup Performance

Figures 2 and 3 show the result of measuring the time to
compile and start applications built with Spring Boot and
Quarkus using different build configurations. Figure 2
presents the compilation times for applications built us-
ing Maven and Gradle, targeting both JAR files and na-
tive images. The fastest compilation was witnessed for
Spring Boot JAR builds using Gradle, with an average
time of 1.2 seconds, followed by Maven, at 4.2 seconds.

Average compilation time

Jar - Gradle

1000

100

[
o

Compilation time [s]

[

Jar - Maven Native image -
Maven

Build configuration

Native image -
Gradle

M Spring Boot Quarkus

Figure 2: Average compilation time for Spring Boot and Quarkus ap-
plications depending on build configuration.

Quarkus JAR builds took 18.4 seconds with Maven
and 3 seconds with Gradle. For native image, Quarkus
build with Maven was the fastest at 146.8 seconds.
Spring Boot build took 183.8 seconds with Maven and
180 seconds with Gradle, and Quarkus build with Gradle
took 202.6 seconds.

Average startup time

» a oo

N

Startup time [s]

o

Jar Native image

Output file type

B Spring Boot Quarkus

Figure 3: Average startup time for Spring Boot and Quarkus applica-
tions depending on output file type.

Figure 3 plots the average startup time to start an ap-
plication versus the type of output file. Spring Boot ap-
plication startup took 5.94 seconds with JAR files, while
Quarkus took 1.99 seconds. Native images reduced the
startup times significantly: Spring Boot native took 0.41
seconds, while Quarkus native took 0.14 seconds,
demonstrating that Quarkus is better when it comes to
startup times.

3.2. Artifact and Image Size

Figure 4 compares the sizes of the artifacts produced by
Spring Boot and Quarkus when run for different build
and deployment configurations, like normal JAR files,
native binaries, and Docker images based on each type of
output. For the JAR based deployments, the applications
were bundled uber JARs containing all dependencies.

Artifact size comparison

:,EJ Native image - Docker |
s % Native image |—
g 5
S
2% Jar - Dok | —
© o
- ©
2 Jar
0 200 400 600

Artifact size [MB]
Quarkus M Spring Boot

Figure 4: Comparison of artifact sizes for Spring Boot and Quarkus
across different build and deployment configurations.

Regarding the size of the JAR file, Spring Boot pro-
duced somewhat larger artifacts (59.20 MB) than
Quarkus (56.80 MB). The difference increased further in
Dockerized JAR builds, where Spring Boot images
weighed 519.51 MB, versus 512.44 MB for Quarkus.

For the compiled native binaries, the binaries were
bigger for Spring Boot (174 MB) than for Quarkus (129
MB). This carried over to the native builds being

487

Journal of Computer Sciences Institute

37 (2025) 484-491

Dockerized, with Spring Boot's image weighing in at
256.35 MB, while Quarkus's image stayed close to
235.76 MB.

Results indicate that Quarkus will lead to marginally
smaller artifacts and Docker images, particularly in na-
tive modes, something that can be advantageous when
dealing with cloud environments and environments with
strict bandwidth or storage limitations.

3.3. Database Access

Figure 5 shows a comparison of mean duration for data-
base operations in relation to data retrieval and insertion
using both frameworks on different build types (JAR and
native image). During the test, 2000 products were writ-
ten and read.

Quarkus demonstrated significantly better read per-
formance compared to Spring Boot in both JAR and na-
tive image modes. The average data fetching time for
Quarkus in native mode was only 7.6 ms, while Spring
Boot took 11 ms. Similarly, in JAR mode, Quarkus out-
performed Spring Boot with an average time of 12 ms
compared to 14.6 ms. This indicates that Quarkus offers
a noticeable performance advantage in simple data re-
trieval operations, regardless of the build type used.

While write operations typically involve more inten-
sive use of database resources, the performance results
show some variation between Spring Boot and Quarkus.
Quarkus consistently achieved slightly better write times
across both JAR and native builds. On average, Quarkus
in native mode completed write operations in 1416 ms,
compared to 1438.6 ms for Spring Boot. In JAR mode,
Quarkus also outperformed Spring Boot with an average
of 1383 ms versus 1403.4 ms. Although the differences
are not dramatic, they do indicate that Quarkus
has a slight edge in write performance under these
test conditions.

The findings show that framework selection and build
configuration have little impact on basic database inter-
action performance. It seems that for simple database us-
age, both Spring Boot and Quarkus offer comparable and
consistent throughput.

Database access performance
10000

1000
100

. AN N

Jar-read Nativeimage- Jar-write Native image -
read write

=
o

Execution time [ms]

Output file and operation type

M Spring Boot Quarkus

Figure 5: Database access performance (read and write) for Spring
Boot and Quarkus using different output file types.

3.4. Request Handling Performance

During the conducted test, response times were analyzed
for individual types of HTTP requests (GET, POST,
PUT, DELETE and MIX) at three levels of load: 50, 500

and 1000 virtual users (VU). Figures 6 to 12 below pre-
sent average response times for each type of request and
configuration (Spring Boot / Quarkus, in JAR version
and native image). The GET request workload was com-
posed of three scenarios: the light scenario involved re-
trieving 15 categories along with 1000 associated prod-
ucts; the medium scenario consisted of retrieving 20 cat-
egories and 2000 products; and the heavy scenario in-
cluded the retrieval of 15,000 orders and 80,000 or-
der items.

GET Request Performance under light load
15

10
 anll sl i
. m L] 0

50 500

1000

Response time [ms]

Number of virtual users

W Quarkus - Jar Quarkus - Native image

M Spring Boot - Jar M Spring Boot - Native image

Figure 6: GET request response time under light load for Spring Boot
and Quarkus (Jar and Native Image) across varying numbers of virtual
users.

For the lighter GET queries (Figure 6), Quarkus in all
the variants had a lower response time than Spring Boot,
especially under the highest load. Differences were
slight, however, for 50 and 500 users.

GET Request Performance under medium load

10000

50 500

1000

Response time [ms]

Number of virtual users

M Quarkus - Jar Quarkus - Native image

M Spring Boot - Jar M Spring Boot - Native image

Figure 7: GET request response time under medium load for Spring
Boot and Quarkus (Jar and Native Image) across different numbers of
virtual users.

GET Request Performance under heavy load
10000

|) I I I I I I
1 I I I
50 500

1000

Response time [ms]

Number of virtual users

W Quarkus - Jar Quarkus - Native image

W Spring Boot - Jar M Spring Boot - Native image

Figure 8: GET request response time under heavy load for Spring
Boot and Quarkus (Jar and Native Image) across different numbers of
virtual users.

Journal of Computer Sciences Institute

37 (2025) 484-491

For moderately complicated GET requests (Figure 7),
frameworks' differences started to reveal themselves
clearly. Native Quarkus gained even by several hundred
milliseconds shorter response time compared to
Spring Boot.

In the case of high load GET requests (Figure 8),
namely those being aggregation queries, the variations
were more noticeable. Spring Boot showed much higher
response times, particularly under the load of 1000 users,
where the average response time was 4040 ms (JAR) and
3250 ms (Quarkus Native). Quarkus Native version was
the only one not reaching 100% success rate, with 97%.

1000

POST request performance
15

10
0
50 500

Number of virtual users

Response time [ms]

M Quarkus - Jar Quarkus - Native image

W Spring Boot - Jar W Spring Boot - Native image

Figure 9: POST request response time for Spring Boot and Quarkus
(Jar and Native Image) under different user loads.

PUT request performance

_ 30
m

£

o 20

£

Q

§10

Q.

g, HMENEN @NNER I u

50 500 1000

Number of virtual users

M Quarkus - Jar Quarkus - Native image

M Spring Boot - Jar W Spring Boot - Native image

Figure 10: PUT request response time for Spring Boot and Quarkus
(Jar and Native Image) across varying numbers of virtual users.
For the POST (Figure 9) and PUT (Figure 10) re-
quests, Quarkus was faster in the majority of cases, with
the exception of a single spike in time for Quarkus JAR
(PUT, 1000 VU).

DELETE request performance

=
(5

Response time [ms]

10

5 I

. muml EEEE]
50 500 1000

Number of virtual users

W Quarkus - Jar Quarkus - Native image

W Spring Boot - Jar W Spring Boot - Native image

Figure 11: DELETE request response time for Spring Boot and
Quarkus (Jar and Native Image) across different numbers of virtual
users.

DELETE (Figure 11) presented the same tendencies
— Quarkus offered lower latency at every level of load.
Mixed CRUD scenario (POST — GET — PUT — DE-
LETE), shown in Figure 12, exhibited the highest dis-
crepancies. Spring Boot, at 1000 users, was achieving an
average response time of over 190 ms (native) and 100
ms (JAR), while Quarkus in native version was achieving
around 6 ms. That points to a clear advantage of Quarkus
for high traffic conditions and complex operations.

MIX request performance
1000

100
, mmmm mmEE B
50 500

1000

Response time [ms]

Number of virtual users

W Quarkus - Jar Quarkus - Native image

M Spring Boot - Jar B Spring Boot - Native image

Figure 12: Mixed request response time for Spring Boot and Quarkus
(Jar and Native Image) across different numbers of virtual users.

3.5. Resource usage

Resource consumption metrics, which are illustrated in
Figures 13 and 14, present the average CPU and memory
consumption of each framework variant under high load
over a duration of 5 minutes conducted with 100 and
1000 virtual users. The load test involved retrieving 100
categories along with 20,000 products, as well as sorting
the categories.

CPU usage over time under heavy load

40,00%

xX

= 30,00%

&

© 20,00%

=3

> 10,00%

o

© 0,00%
O 0O 9O 00O 0O 00090 OO0 9O O 9O O
S ¥ o T OV FTOANFTOANT O
O O O d o o4 &N &N N 0o o0 on S g S
S 6 © O 0O 00 o0 o oo o o & & o

Time [min:s]

e Spring Boot - Jar Spring Boot - Native image

Quarkus - Jar e Quarkus - Native image

Figure 13: CPU usage over time under heavy load for Spring Boot and
Quarkus (Jar and Native Image).

CPU usage under 1000 VUs was the highest for
Quarkus JAR (20.3%), with Spring Boot Native follow-
ing closely (17.09%). Quarkus Native had a little lower
usage (14.94%), and the lowest was Spring Boot JAR
(14.64%). As expected, the Quarkus JAR consumed
more CPU than its native counterpart, which is consistent
with the fact that native code generally executes more ef-
ficiently than code interpreted by the JVM, especially un-
der high load.

Figure 14 illustrates memory usage under the same
testing conditions.

Memory consumption analysis reveals a stark differ-
ence between native and JAR variants. Spring Boot JAR

489

Journal of Computer Sciences Institute

37 (2025) 484-491

consumed the most memory (628.18 MB), while
Quarkus Native consumed the lowest memory (355.76
MB). The difference was even more significant at low
load (100 VUs), where native images consumed up to
70% less memory compared to their respective JAR var-
iants.

Memory usage over time under heavy load

2000

o

2 1500

(]

& 1000 —

3

3 —

> 500 L

9]

5 o

[

= 2988888888888 ¢s
S S S d d d AN A A MO S S S !
S & & OO0 oo OO0 o o o o o o

Time [min:s]
e Spring Boot - Jar Spring Boot - Native image

Quarkus - Jar e Quarkus - Native image

Figure 14: Memory usage over time under heavy load for Spring Boot
and Quarkus (Jar and Native Image).

4. Discussion

The performance difference between Spring Boot and
Quarkus frameworks revealed a set of trade offs accord-
ing to the literature.

In startup and build performance analysis, Quarkus,
when natively compiled, consistently showed the lowest
startup times—confirming literature research that
GraalVM greatly improves startup latency and resource
consumption [1], [3]. Yet, as illustrated in our findings,
these advantages were accompanied by increased compi-
lation times and more complicated build pipelines.

On the memory and CPU side, our findings match
those in studies such as [2] and [3], where Quarkus native
images consumed less RAM during low to medium load.
But during high load (1000 VUs), memory consumption
for Quarkus JARs increased exponentially—surpassing
Spring Boot in some cases. This corroborates previous
observations of higher memory consumption for Quarkus
under high volume tasks [5].

In HTTP request processing, Quarkus outperformed
Spring Boot in most of the GET, POST, and DELETE
operations in both latency and throughput. This aligns
with previous research proving Quarkus' edge in re-
sponse time and throughput [1], [4]. However, Spring
Boot demonstrated higher stability under the combined
CRUD and heavy GET loads, achieving a 100% request
success rate compared to around 97% for Quarkus Native
- proving its strength over heavy complexity and contin-
uous load as stated in [6], [7].

Our test findings corroborated the hypothesis H1: that
Quarkus native images offer better startup and runtime
performance. They also lent partial support to H2: Spring
Boot offered greater stability and predictable perfor-
mance, especially under load. H3, for HTTP response
time, also stood—Quarkus consistently yielded shorter
response times in nearly all categories. Lastly, the find-
ings mirror the wider industry trend: Quarkus is increas-
ingly the best fit for new, lightweight, cloud native appli-
cations, with Spring Boot still dominant in enterprise use

cases necessitating heavy tooling and long term support
[8-10].

5. Conclusions

The aim of this study was to directly compare the perfor-
mance potential of two popular Java frameworks, Spring
Boot and Quarkus, by implementing the same web appli-
cation using both technologies and executing an exten-
sive set of benchmarks. The benchmarks covered the
more traditional JAR based deployments along with na-
tive images compiled with GraalVM, providing a holistic
picture of how each stacks up under different conditions.

The findings indicated that Quarkus, and more so
its native version, recorded much quicker application
startup times and is thus well adapted to cloud native en-
vironments where low latency and effective scalability
are prioritized. Spring Boot, on its part, registered more
consistent and stable performance in longer and intricate
processes, an indicator of its higher appropriateness for
enterprise type applications that demand constant long
term reliability.

In comparing the handling of HTTP requests on dif-
ferent endpoints—starting from simple read access to
compound write operations and CRUD application—
Quarkus consistently demonstrated better response times
and greater throughput levels. Spring Boot, nevertheless,
exhibited good stability and consistent response rates,
even at high load levels.

Resource usage patterns analysis showed that
Quarkus native runs typically have less memory usage
under lighter load levels, whereas Spring Boot shows less
variable CPU and RAM consumption under extended pe-
riods of traffic. This balance reflects Quarkus' strength in
ephemeral and containerized deployments, as Spring
Boot remains a solid choice for traditional infrastructure
under high service duration conditions.

In short, the noted differences in performance be-
tween the two frameworks give weight to the idea that
Quarkus may be more appropriate for modern, cloud cen-
tric applications where fast startup times and low re-
source overhead are paramount. Spring Boot, on the other
hand, is still a viable and flexible choice for complex ap-
plications that require high configurability, stability, and
ecosystem support. The ultimate selection of such tech-
nologies should be based on the particular requirements
of the target system and the application environment
where it will be used.

References

[11 L. Wycislik, L. Latusik, A. M. Kaminska, A comparative
assessment of JVM frameworks to develop
microservices, Appl. Sci. 13 (2023) 1343,

https://doi.org/10.3390/app13031343.

P. Plecinski, N. Bokla, T. Klymkovych, M. Melnyk, W.
Zabierowski, Comparison of representative microservices
technologies in terms of performance for use for projects
based on sensor networks, Sensors 22 (2022) 7759,
https://doi.org/10.3390/s22207759.

M. gipek, D. Muharemagié¢, B. Mihaljevi¢, A. Radovan,
Enhancing performance of cloud-based software

(3]

490

https://doi.org/10.3390/app13031343
https://doi.org/10.3390/s22207759

Journal of Computer Sciences Institute

37 (2025) 484-491

[10

[ier

[11]

applications with GraalVM and Quarkus, In 2020 43rd
International Convention on Information, Communication
and Electronic Technology (MIPRO) IEEE (2020)
1746- 1751,
https://doi.org/10.23919/MIPR0O48935.2020.9245290.

M. Jelen, M. Dzienkowski, The comparative analysis of
Java frameworks: Spring Boot, Micronaut and Quarkus,
J. Comput. Sci. Inst. 21 (2021) 287-294,
https://doi.org/10.35784/jcsi.2724.

B. Silva, P. Carvalho, Migration of a microservice from
Payara Micro to Quarkus and performance analysis, In
2022 International Conference on Electrical, Computer,
Communications and Mechatronics Engineering
(ICECCME) IEEE (2022) 1- 5,
https://doi.org/10.1109/ICECCMES5909.2022.9988587.

0. C. Novac, D. Ghiurau, M. C. Novac, C. E. Gordan, M.
Oproescu, G. Bujdoso, Comparison of Node.Js and Spring
Boot in web development, In 2023 15th International
Conference on Electronics, Computers and Artificial
Intelligence (ECAI) IEEE (2023) 1-7,
https://doi.org/10.1109/ECAI58194.2023.10194025.

D. Choma, K. Chwaleba, M. Dzienkowski, The efficiency
and reliability of backend technologies: Express, Django,
and Spring Boot, Informatyka Automatyka Pomiary Gosp.
Ochr. Srodowiska 13(4) (2023) 73-78.

M. Mythily, A. S. Arun Raj, I. T. Joseph, An analysis of
the significance of Spring Boot in the market, In 2022
International Conference on Inventive Computation
Technologies (ICICT) IEEE (2022) 1277-1281,
https://doi.org/10.1109/ICICT54344.2022.9850910.

M. Klymash, I. Tchaikovskyi, O. Hordiichuk-Bublivska,
Y. Pyrih, Research of microservices features in
information systems using Spring Boot, In 2020 IEEE
International Conference on Problems of
Infocommunications. Science and Technology (PIC S&T)
(2020) 507-510,
https://doi.org/10.1109/PICST51311.2020.9467911.

S. Pallewatta, V. Kostakos, R. Buyya, MicroFog: A
framework for scalable placement of microservices-based
IoT applications in federated fog environments, J. Syst.
Softw. 209 (2023) 111910,
https://doi.org/10.1016/1.jss.2023.111910.

H. Suryotrisongko, D. P. Jayanto, A. Tjahyanto, Design
and development of backend application for public
complaint systems using microservice Spring Boot,
Procedia Comput. Sci. 124 (2017) 736-743.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

M. Mythily, A. D. D. C. Durai, V. R. Kanakala, I. T.
Joseph, R. Nambiar, An extensive review of Spring Boot
testing based on business requirements of the software, In
2023 4th International Conference on Smart Electronics
and Communication (ICOSEC) IEEE (2023) 1547-1553,
https://doi.org/10.1109/ICOSEC58147.2023.10276283.

S. Mohan, K. Goswami, Performance Analysis and
Comparison of Node.Js and Java Spring Boot in
Implementation of Restful Applications, Softw. Pract.
Exper. (2025), https://doi.org/10.1002/spe.3418.

C. Calero, M. Polo, M. Moraga, Investigating the impact
on execution time and energy consumption of developing
with Spring, Sustain. Comput. Inform. Syst. 32 (2021)
100603, https://doi.org/10.1016/j.suscom.2021.100603.

A. Navarro, J. Ponge, F. Le Mouél, C. Escoffier,
Considerations for integrating virtual threads in a Java
framework: A Quarkus example in a resource-constrained
environment, In 17th ACM International Conference on
Distributed and Event-Based Systems (DEBS’2023)
(2023), https://doi.org/10.1145/3583678.3596895.

A. Sharma, K. Tahiliani, G. P. Dubey, Reactive-optimized
sentence detection in Kubernetes using OpenNLP and
native GraalVM image with framework metric
comparison, In 2023 4th International Conference for
Emerging Technology (INCET) IEEE (2023) 1-9,
https://doi.org/10.1109/INCETS57972.2023.10170347.

M. Gajewski, W. Zabierowski, Analysis and comparison
of the Spring framework and Play framework
performance, used to create web applications in Java, In
IEEE XVth International Conference on the Perspective
Technologies and Methods in MEMS Design (2019) 170—
173, https://doi.org/10.1109/MEMSTECH.2019.8817390.

Y. Jayawardana, R. Fernando, G. Jayawardena, D.
Weerasooriya, 1. Perera, A full stack microservices
framework with business modelling, In 2018 18th
International Conference on Advances in ICT for
Emerging Regions (ICTer) IEEE (2018) 78-85,
https://doi.org/10.1109/ICTER.2018.8615473.

A. Ginanjar, M. Hendayun, Spring framework reliability
investigation against database bridging layer using Java
platform, Procedia Comput. Sci. 161 (2019) 1036-1045,
https://doi.org/10.1016/j.procs.2019.11.214.

A. Poniszewska-Maranda, K. Stepien, M. Glowinski,
Function analysis of web services based on REST protocol
with selected frameworks, In 2021 International
Conference on Software, Telecommunications and
Computer Networks (SoftCOM) IEEE (2021) 1-6,
https://doi.org/10.23919/SoftCOM52868.2021.9559090.

491

https://doi.org/10.23919/MIPRO48935.2020.9245290
https://doi.org/10.35784/jcsi.2724
https://doi.org/10.1109/ICECCME55909.2022.9988587
https://doi.org/10.1109/ECAI58194.2023.10194025
https://doi.org/10.1109/ICICT54344.2022.9850910
https://doi.org/10.1109/PICST51311.2020.9467911
https://doi.org/10.1016/j.jss.2023.111910
https://doi.org/10.1109/ICOSEC58147.2023.10276283
https://doi.org/10.1002/spe.3418
https://doi.org/10.1016/j.suscom.2021.100603
https://doi.org/10.1145/3583678.3596895
https://doi.org/10.1109/INCET57972.2023.10170347
https://doi.org/10.1109/MEMSTECH.2019.8817390
https://doi.org/10.1109/ICTER.2018.8615473
https://doi.org/10.1016/j.procs.2019.11.214
https://doi.org/10.23919/SoftCOM52868.2021.9559090

