
JCSI 37 (2025) 484–491

Received: 5 July 2025

Accepted: 7 September 2025

484

Comparative Performance Analysis of Spring Boot and Quarkus

Frameworks in Java Applications

Analiza porównawcza szkieletów Spring Boot i Quarkus pod kątem
wydajności aplikacji Java

Grzegorz Szymanek*, Jakub Smołka

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The paper presents comparative performance characterization of two Java application development frameworks, Spring

Boot and Quarkus. A representative reference application was implemented using both frameworks to enable such a

comparison. The study entailed measurements in terms of multiple metrics, including compilation time, initialization time

for an application, final file sizes, CPU and RAM consumption, latency in HTTP response, throughput, and efficiency of

database queries. Tests were run on both JAR and native image versions with varying loads. Results convincingly showed

the benefits of native Quarkus in startup performance and resource utilization. Spring Boot is still a proven option with a

broader tooling universe supporting it, though. This research gives interesting input to decide on the best technology for

modern Java applications.

Keywords: Java; Spring Boot; Quarkus

Streszczenie

Artykuł przedstawia porównawczą charakterystykę wydajności dwóch szkieletów programistycznych do tworzenia apli-

kacji w języku Java: Spring Boot i Quarkus. W celu umożliwienia takiego porównania zaimplementowano reprezenta-
tywną aplikację referencyjną w obu technologiach. Badanie obejmowało pomiary w różnych aspektach, takich jak czas
kompilacji, czas inicjalizacji aplikacji, rozmiar pliku wynikowego, zużycie CPU i pamięci RAM, opóźnienie w odpowie-
dzi HTTP, przepustowość oraz efektywność zapytań do bazy danych. Testy przeprowadzono zarówno dla wersji JAR,
jak i obrazu natywnego, przy różnych poziomach obciążenia. Wyniki jednoznacznie wskazały na zalety natywnego Qu-
arkusa pod względem szybkości uruchamiania i efektywności wykorzystania zasobów. Mimo to Spring Boot pozostaje

sprawdzonym rozwiązaniem, wspieranym przez szerszy ekosystem narzędziowy. Niniejsze badanie dostarcza cennych
wskazówek przy wyborze odpowiedniej technologii dla nowoczesnych aplikacji Java.
Słowa kluczowe: Java; Spring Boot; Quarkus

*Corresponding author

Email address: s95587@pollub.edu.pl (G. Szymanek)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction

The development of information technologies, along

with the increasingly high demands of users for web ap-

plications, has placed software performance as an in-

creasingly critical concern. In business settings and high-

demand programs, the responsiveness of applications, ef-

fective use of resources, and flexibility in deployment are

of utmost importance. In such a situation, the proper de-

velopment tools and frameworks for creating web appli-

cations are crucial.

Java, one of the main drivers in the evolution of in-

formation systems over the years, relies on a number of

frameworks that support the development of micro-

services architecture based applications. Among the lead-

ing and most popular solutions is Spring Boot, a stable

and feature rich framework with a rich ecosystem of li-

braries and tools. In the context of evolving requirements

such as startup time reduction and memory performance

enhancement in containerized applications, a new frame-

work has been introduced: Quarkus, which is "Super-

sonic Subatomic Java" tailored for the cloud age. Low

application startup times and the capacity to generate

native images through GraalVM, significantly enhancing

resource consumption and execution speed, are Quarkus'

main features.

1.1. The aim and object of the research

The primary objective of this study is to conduct an anal-

ysis and comparison of the performance metrics of

Spring Boot and Quarkus frameworks in the aspect of de-

veloping contemporary Java based web applications. The

analysis encompasses measuring the values of diverse

technical parameters, including startup time, memory and

CPU utilization, latency of HTTP responses, throughput,

and data manipulation operation efficiency in JAR based

and GraalVM native environments. From a literature re-

view of recent research, the following hypotheses have

been formulated:

• Quarkus supports faster application startup time and

reduced resource consumption by way of native com-

pilation through GraalVM than Spring Boot,

• though Spring Boot shows greater memory consump-

tion and longer setup, it exhibits greater stability

mailto:s95587@pollub.edu.pl

Journal of Computer Sciences Institute 37 (2025) 484-491

485

during operation, which makes it a well known choice

for big enterprise systems with long-term support,

• Quarkus has shorter HTTP response times than

Spring Boot.

1.2. Literature Review

Numerous benchmarks have compared modern Java

frameworks for their performance, startup time, and suit-

ability to cloud native architectures. Of these, Spring

Boot and Quarkus are two of the most widely bench-

marked technologies.

A number of benchmarks have demonstrated that

Quarkus has better runtime performance in the context of

initialization time, memory consumption, and processor

overhead—especially when compiled to native images

via GraalVM [1-3]. All these make it extremely well

suited to be utilized in serverless and containerized envi-

ronments. Spring Boot, on the other hand, continues to

exhibit better robustness under high loads as well as in

sophisticated application configurations [4-6].

The porting of legacy microservices to the Quarkus

framework has exhibited considerable reduction in de-

ployment time and CPU utilization but can be associated

with higher memory consumption [5]. Spring Boot, on

the other hand, remains the first choice in enterprise do-

mains, i.e., finance and government, because of its ma-

tured ecosystem and enormous capabilities for integra-

tion and configuration [7-9].

They are both heavily used for IoT and microservice

designs. Research attests to the prowess of Quarkus in

light weight deployments due to its minimal resource

footprint, making it ideal for sensor networks and edge

computing [2], [10]. Spring Boot remains a suitable con-

tender due to its rich support for distributed systems and

reliability for long running services [11].

Spring Boot is defined by its large testing framework,

including tools such as JUnit, Mockito, and SpringRun-

ner that enable comprehensive unit, integration, and sys-

tem testing [12]. The use of these tools results in better

software quality and reduced development time. An ap-

plication based on Spring Boot required less code, indi-

cating the advantages of its rich ecosystem and built in

dependencies [13]. On the other hand, while Quarkus

shows high performance, it may require more manual

configuration in testing scenarios.

A study that included execution efficiency showed

that Spring based applications consumed more energy

and executed slower than applications that were built

without using the framework. This was mainly due to re-

flection based runtime processing [14]. Although Spring

increases developer productivity, it may not be optimally

suited for energy limited environments.

Quarkus has also experimented with virtual threads as

a third option to both blocking and reactive paradigms.

Findings indicate that virtual threads can enhance trans-

parency and simplicity of development but may be af-

fected by higher garbage collection pressures under

heavy loads [15]. Reactive paradigms, especially as real-

ized in Spring Boot and Quarkus, always perform better

than conventional threading models in scenarios with in-

tensive I/O operations [16].

While Play Framework would be more performant in

light, lowload applications, Spring Framework outper-

forms it when system complexity and user concurrency

are greater [17]. In modeling business process fullstack

applications, Spring Boot was compared with emerging

stacks and is still competitive in medium scale scenar-

ios [18].

Spring Boot's utilization along with other abstraction

layers for the database, such as MyBatis and Hibernate,

contributes to its performance overall. It has been discov-

ered that certain combinations offer higher reliability and

better speed, especially those involving caching mecha-

nisms [19].

Several assessments highlighted the strong market

position of Spring Boot. It has been heavily used in criti-

cal sectors like finance, healthcare, where the need for

security, scalability, and multithreading support is top

priority [7], [8]. In contrast, Quarkus, being newer, is in-

creasingly popular because of its cloud native foundation

and ability to scale effectively with minimal resources

[1], [3].

In general, Quarkus performs better, more efficiently,

and is more compatible with current cloud environments,

particularly when it's natively compiled. Spring Boot,

however, is still the most widely used option of large

scale enterprise applications due to its reliability, mature

ecosystem, and established tooling. It all hinges on the

particular needs of the application, such as deployment

environment, performance limitations, and developers'

skillset, to prefer one over the other [20].

2. Research Methodology

This chapter presents the research methodology followed

to assess and compare the performance of the Spring

Boot and Quarkus frameworks. The chapter defines the

aim and scope of the research, test environment setup,

experimental application design, performance test sce-

narios, and data collection and analysis techniques.

2.1. Research Objective and Scope

The main objective of this study is to conduct a compar-

ative analysis of the performance of two most widely uti-

lized Java based web application frameworks: Spring

Boot and Quarkus. The comparison is based on an assess-

ment of the performance of the two frameworks in the

development and execution of the same e-commerce ap-

plication, such as the management of orders, categories,

and products.

To enable a fair comparison, both frameworks were

tested in two run modes: the standard Java Archive (JAR)

run mode and a native executable created with GraalVM.

Having the comparison done in two modes enables the

examination of not just the intrinsic performance traits

but also the impact of native compilation on system re-

source utilization and application responsiveness.

2.2. Testing Environment

To try to maintain consistency and minimize the impact

of external variables that may impact the outcomes, all of

Journal of Computer Sciences Institute 37 (2025) 484-491

486

the experiments were run on a single laptop in a con-

trolled lab. The laptop was running Windows 11 Educa-

tion (64-bit) and served as the only environment for de-

velopment, execution, and monitoring of both applica-

tion versions during the research. This environment was

chosen to simulate a common developer workstation

while having a reproducible environment for Spring Boot

and Quarkus application performance measurement.

Table 1: Computer specification

Component Specification

Processor AMD Ryzen 7 8845HS

5.1 GHz, 8 cores, 16 threads

RAM 32 GB DDR5

Graphics Card Nvidia RTX 4070 8GB

Storage 1 TB SSD

Operating System Windows 11

Table 1 shows the key specifications of the test lap-

top, including the processor, memory, operating system,

and storage configuration. All software tools and frame-

works used by the experiments were executed natively on

the host platform without virtualization, except for spe-

cifically containerized tests executed with Docker.

2.3. Application Design and Technology Stack

The application under test is a sample online shopping

system with mocked product management, categories,

and orders from customers. It was purposely designed to

be a typical CRUD based business application and in-

cludes both read intensive and write intensive operations.

This allowed performance testing across a broad spec-

trum of backend workloads. Figure 1 presents the rela-

tional database schema used by the application.

Figure 1: Relational database schema used in the tested application.

In order to ensure objective comparability, applica-

tion logic, database schema, and functionality were

standardized in both implementations, one Spring Boot

based and the other Quarkus based. Both versions have

the same RESTful endpoints and work against the same

PostgreSQL relational database. Table 2 presents com-

plete technology stack used in both implementations.

Table 2: Technology stack used in both Spring Boot and Quarkus

implementations

Component Version

Java 21

Maven 3.9.9

Gradle 8.13

Spring Boot 3.4.4

Quarkus 3.19.1

GraalVM 21

PostgreSQL 17.0

Docker 27.4.0

2.4. Test Scenarios and Performance Evaluation

Approach

In order to comprehensively compare the performance of

the applications built, several test scenarios were con-

structed to simulate real world workloads characteristic

of CRUD based e-commerce web applications. The test-

ing process involved the measurement of efficiency of

both frameworks (Quarkus and Spring Boot) in various

operational scenarios with standard metrics and monitor-

ing tools (Grafana K6 and Prometheus). The assessment

covered the following key areas:

1. Build performance: A comparison of the average

compilation time using Maven and Gradle in both

frameworks.

2. Startup performance: Native executable and JAR-

based versions' application startup time measurement.

3. Artifact size comparison: Comparison of sizes of JAR

files generated, native binaries, and Docker image

sizes.

4. Database access performance: Measurement of the

average time to read from and write to PostgreSQL

database for specified load parameters.

5. Request performance testing:

• GET requests – included three levels of

complexity: the light load phase loads 15

categories and 1,000 products. The medium

load handles 20 categories and 2,000 prod-

ucts. The heavy load runs an aggregation

query to fetch the top 10 products based on

15,000 orders and 80,000 order items.

• POST requests - creation of new orders con-

taining multiple items and related stock up-

dates,

• DELETE requests - removal of products by

ID, utilized for data cleanup simulation or

admin activities,

• PUT requestes - update records of existing

products to match data changes,

Journal of Computer Sciences Institute 37 (2025) 484-491

487

• MIX requests - are a composite scenario that

utilizes a series of POST, GET, PUT and

DELETE requests, thereby covering the end

to end lifecycle of a resource.

6. Resource usage: Monitoring CPU usage and RAM

usage when executing tests.

All load tests based on HTTP were executed with k6,

an open source performance testing tool. All scenarios

were tested with three loads of users: 50, 500, and 1000

virtual users (VUs), with a fixed test duration of 2

minutes per iteration. These settings allowed response

stability and throughput to be assessed against increasing

levels of concurrency.

Further, resource consumption tests, specifically

CPU and RAM usage, were also carried out as stress

tests, which ran in 5 minute intervals, with two provided

loads: 100 virtual users (VUs) and 1000 virtual users

(VUs). These tests gave valuable insight into the long-

term efficiency and scalability of each framework under

continuous stress.

Behavior and resource metrics of applications were

gathered by Prometheus and subsequently monitored by

Grafana, enabling real time system performance monitor-

ing with precision.

3. Results and Analysis

This chapter presents the findings derived from all exper-

imental tests in this research. The measurements address

various performance dimensions, such as construction

time, initialization latency, resource utilization, request

processing effectiveness, and database operations. The

findings are organized by test type with a short analysis

following every group of findings to point out important

patterns of performance.

3.1. Build and Startup Performance

Figures 2 and 3 show the result of measuring the time to

compile and start applications built with Spring Boot and

Quarkus using different build configurations. Figure 2

presents the compilation times for applications built us-

ing Maven and Gradle, targeting both JAR files and na-

tive images. The fastest compilation was witnessed for

Spring Boot JAR builds using Gradle, with an average

time of 1.2 seconds, followed by Maven, at 4.2 seconds.

Figure 2: Average compilation time for Spring Boot and Quarkus ap-

plications depending on build configuration.

Quarkus JAR builds took 18.4 seconds with Maven

and 3 seconds with Gradle. For native image, Quarkus

build with Maven was the fastest at 146.8 seconds.

Spring Boot build took 183.8 seconds with Maven and

180 seconds with Gradle, and Quarkus build with Gradle

took 202.6 seconds.

Figure 3: Average startup time for Spring Boot and Quarkus applica-

tions depending on output file type.

Figure 3 plots the average startup time to start an ap-

plication versus the type of output file. Spring Boot ap-

plication startup took 5.94 seconds with JAR files, while

Quarkus took 1.99 seconds. Native images reduced the

startup times significantly: Spring Boot native took 0.41

seconds, while Quarkus native took 0.14 seconds,

demonstrating that Quarkus is better when it comes to

startup times.

3.2. Artifact and Image Size

Figure 4 compares the sizes of the artifacts produced by

Spring Boot and Quarkus when run for different build

and deployment configurations, like normal JAR files,

native binaries, and Docker images based on each type of

output. For the JAR based deployments, the applications

were bundled uber JARs containing all dependencies.

Figure 4: Comparison of artifact sizes for Spring Boot and Quarkus

across different build and deployment configurations.

Regarding the size of the JAR file, Spring Boot pro-

duced somewhat larger artifacts (59.20 MB) than

Quarkus (56.80 MB). The difference increased further in

Dockerized JAR builds, where Spring Boot images

weighed 519.51 MB, versus 512.44 MB for Quarkus.

For the compiled native binaries, the binaries were

bigger for Spring Boot (174 MB) than for Quarkus (129

MB). This carried over to the native builds being

1

10

100

1000

Jar - Maven Jar - Gradle Native image -

Maven

Native image -

Gradle

C
o

m
p

il
a

ti
o

n
 t

im
e

 [
s]

Build configuration

Average compilation time

Spring Boot Quarkus

0

2

4

6

8

Jar Native image

S
ta

rt
u

p
 t

im
e

 [
s]

Output file type

Average startup time

Spring Boot Quarkus

0 200 400 600

Jar

Jar - Docker

Native image

Native image - Docker

Artifact size [MB]

B
u

il
d

 a
n

d
 d

e
p

lo
y

m
e

n
t

co
n

fi
g

u
ra

ti
o

n

Artifact size comparison

Quarkus Spring Boot

Journal of Computer Sciences Institute 37 (2025) 484-491

488

Dockerized, with Spring Boot's image weighing in at

256.35 MB, while Quarkus's image stayed close to

235.76 MB.

Results indicate that Quarkus will lead to marginally

smaller artifacts and Docker images, particularly in na-

tive modes, something that can be advantageous when

dealing with cloud environments and environments with

strict bandwidth or storage limitations.

3.3. Database Access

Figure 5 shows a comparison of mean duration for data-

base operations in relation to data retrieval and insertion

using both frameworks on different build types (JAR and

native image). During the test, 2000 products were writ-

ten and read.

Quarkus demonstrated significantly better read per-

formance compared to Spring Boot in both JAR and na-

tive image modes. The average data fetching time for

Quarkus in native mode was only 7.6 ms, while Spring

Boot took 11 ms. Similarly, in JAR mode, Quarkus out-

performed Spring Boot with an average time of 12 ms

compared to 14.6 ms. This indicates that Quarkus offers

a noticeable performance advantage in simple data re-

trieval operations, regardless of the build type used.

While write operations typically involve more inten-

sive use of database resources, the performance results

show some variation between Spring Boot and Quarkus.

Quarkus consistently achieved slightly better write times

across both JAR and native builds. On average, Quarkus

in native mode completed write operations in 1416 ms,

compared to 1438.6 ms for Spring Boot. In JAR mode,

Quarkus also outperformed Spring Boot with an average

of 1383 ms versus 1403.4 ms. Although the differences

are not dramatic, they do indicate that Quarkus

has a slight edge in write performance under these

test conditions.

The findings show that framework selection and build

configuration have little impact on basic database inter-

action performance. It seems that for simple database us-

age, both Spring Boot and Quarkus offer comparable and

consistent throughput.

Figure 5: Database access performance (read and write) for Spring

Boot and Quarkus using different output file types.

3.4. Request Handling Performance

During the conducted test, response times were analyzed

for individual types of HTTP requests (GET, POST,

PUT, DELETE and MIX) at three levels of load: 50, 500

and 1000 virtual users (VU). Figures 6 to 12 below pre-

sent average response times for each type of request and

configuration (Spring Boot / Quarkus, in JAR version

and native image). The GET request workload was com-

posed of three scenarios: the light scenario involved re-

trieving 15 categories along with 1000 associated prod-

ucts; the medium scenario consisted of retrieving 20 cat-

egories and 2000 products; and the heavy scenario in-

cluded the retrieval of 15,000 orders and 80,000 or-

der items.

Figure 6: GET request response time under light load for Spring Boot

and Quarkus (Jar and Native Image) across varying numbers of virtual

users.

For the lighter GET queries (Figure 6), Quarkus in all

the variants had a lower response time than Spring Boot,

especially under the highest load. Differences were

slight, however, for 50 and 500 users.

Figure 7: GET request response time under medium load for Spring

Boot and Quarkus (Jar and Native Image) across different numbers of

virtual users.

Figure 8: GET request response time under heavy load for Spring

Boot and Quarkus (Jar and Native Image) across different numbers of

virtual users.

1

10

100

1000

10000

Jar - read Native image -

read

Jar - write Native image -

write

E
x
e

cu
ti

o
n

 t
im

e
 [

m
s]

Output file and operation type

Database access performance

Spring Boot Quarkus

0

5

10

15

50 500 1000R
e

sp
o

n
se

 t
im

e
 [

m
s]

Number of virtual users

GET Request Performance under light load

Quarkus - Jar Quarkus - Native image

Spring Boot - Jar Spring Boot - Native image

1

100

10000

50 500 1000R
e

sp
o

n
se

 t
im

e
 [

m
s]

Number of virtual users

GET Request Performance under medium load

Quarkus - Jar Quarkus - Native image

Spring Boot - Jar Spring Boot - Native image

1

100

10000

50 500 1000

R
e

sp
o

n
se

 t
im

e
 [

m
s]

Number of virtual users

GET Request Performance under heavy load

Quarkus - Jar Quarkus - Native image

Spring Boot - Jar Spring Boot - Native image

Journal of Computer Sciences Institute 37 (2025) 484-491

489

For moderately complicated GET requests (Figure 7),

frameworks' differences started to reveal themselves

clearly. Native Quarkus gained even by several hundred

milliseconds shorter response time compared to

Spring Boot.

In the case of high load GET requests (Figure 8),

namely those being aggregation queries, the variations

were more noticeable. Spring Boot showed much higher

response times, particularly under the load of 1000 users,

where the average response time was 4040 ms (JAR) and

3250 ms (Quarkus Native). Quarkus Native version was

the only one not reaching 100% success rate, with 97%.

Figure 9: POST request response time for Spring Boot and Quarkus

(Jar and Native Image) under different user loads.

Figure 10: PUT request response time for Spring Boot and Quarkus

(Jar and Native Image) across varying numbers of virtual users.

For the POST (Figure 9) and PUT (Figure 10) re-

quests, Quarkus was faster in the majority of cases, with

the exception of a single spike in time for Quarkus JAR

(PUT, 1000 VU).

Figure 11: DELETE request response time for Spring Boot and

Quarkus (Jar and Native Image) across different numbers of virtual

users.

DELETE (Figure 11) presented the same tendencies

– Quarkus offered lower latency at every level of load.

Mixed CRUD scenario (POST → GET → PUT → DE-
LETE), shown in Figure 12, exhibited the highest dis-

crepancies. Spring Boot, at 1000 users, was achieving an

average response time of over 190 ms (native) and 100

ms (JAR), while Quarkus in native version was achieving

around 6 ms. That points to a clear advantage of Quarkus

for high traffic conditions and complex operations.

Figure 12: Mixed request response time for Spring Boot and Quarkus

(Jar and Native Image) across different numbers of virtual users.

3.5. Resource usage

Resource consumption metrics, which are illustrated in

Figures 13 and 14, present the average CPU and memory

consumption of each framework variant under high load

over a duration of 5 minutes conducted with 100 and

1000 virtual users. The load test involved retrieving 100

categories along with 20,000 products, as well as sorting

the categories.

Figure 13: CPU usage over time under heavy load for Spring Boot and

Quarkus (Jar and Native Image).

CPU usage under 1000 VUs was the highest for

Quarkus JAR (20.3%), with Spring Boot Native follow-

ing closely (17.09%). Quarkus Native had a little lower

usage (14.94%), and the lowest was Spring Boot JAR

(14.64%). As expected, the Quarkus JAR consumed

more CPU than its native counterpart, which is consistent

with the fact that native code generally executes more ef-

ficiently than code interpreted by the JVM, especially un-

der high load.

Figure 14 illustrates memory usage under the same

testing conditions.

Memory consumption analysis reveals a stark differ-

ence between native and JAR variants. Spring Boot JAR

0

5

10

15

50 500 1000

R
e

sp
o

n
se

 t
im

e
 [

m
s]

Number of virtual users

POST request performance

Quarkus - Jar Quarkus - Native image

Spring Boot - Jar Spring Boot - Native image

0

10

20

30

50 500 1000

R
e

sp
o

n
se

 t
im

e
 [

m
s]

Number of virtual users

PUT request performance

Quarkus - Jar Quarkus - Native image

Spring Boot - Jar Spring Boot - Native image

0

5

10

15

50 500 1000R
e

sp
o

n
se

 t
im

e
 [

m
s]

Number of virtual users

DELETE request performance

Quarkus - Jar Quarkus - Native image

Spring Boot - Jar Spring Boot - Native image

1

10

100

1000

50 500 1000R
e

sp
o

n
se

 t
im

e
 [

m
s]

Number of virtual users

MIX request performance

Quarkus - Jar Quarkus - Native image

Spring Boot - Jar Spring Boot - Native image

0,00%

10,00%

20,00%

30,00%

40,00%

0
0

:0
0

0
0

:2
0

0
0

:4
0

0
1

:0
0

0
1

:2
0

0
1

:4
0

0
2

:0
0

0
2

:2
0

0
2

:4
0

0
3

:0
0

0
3

:2
0

0
3

:4
0

0
4

:0
0

0
4

:2
0

0
4

:4
0

0
5

:0
0

C
P

U
 u

sa
g

e
 [

%
]

Time [min:s]

CPU usage over time under heavy load

Spring Boot - Jar Spring Boot - Native image

Quarkus - Jar Quarkus - Native image

Journal of Computer Sciences Institute 37 (2025) 484-491

490

consumed the most memory (628.18 MB), while

Quarkus Native consumed the lowest memory (355.76

MB). The difference was even more significant at low

load (100 VUs), where native images consumed up to

70% less memory compared to their respective JAR var-

iants.

Figure 14: Memory usage over time under heavy load for Spring Boot

and Quarkus (Jar and Native Image).

4. Discussion

The performance difference between Spring Boot and

Quarkus frameworks revealed a set of trade offs accord-

ing to the literature.

In startup and build performance analysis, Quarkus,

when natively compiled, consistently showed the lowest

startup times—confirming literature research that

GraalVM greatly improves startup latency and resource

consumption [1], [3]. Yet, as illustrated in our findings,

these advantages were accompanied by increased compi-

lation times and more complicated build pipelines.

On the memory and CPU side, our findings match

those in studies such as [2] and [3], where Quarkus native

images consumed less RAM during low to medium load.

But during high load (1000 VUs), memory consumption

for Quarkus JARs increased exponentially—surpassing

Spring Boot in some cases. This corroborates previous

observations of higher memory consumption for Quarkus

under high volume tasks [5].

In HTTP request processing, Quarkus outperformed

Spring Boot in most of the GET, POST, and DELETE

operations in both latency and throughput. This aligns

with previous research proving Quarkus' edge in re-

sponse time and throughput [1], [4]. However, Spring

Boot demonstrated higher stability under the combined

CRUD and heavy GET loads, achieving a 100% request

success rate compared to around 97% for Quarkus Native

- proving its strength over heavy complexity and contin-

uous load as stated in [6], [7].

Our test findings corroborated the hypothesis H1: that

Quarkus native images offer better startup and runtime

performance. They also lent partial support to H2: Spring

Boot offered greater stability and predictable perfor-

mance, especially under load. H3, for HTTP response

time, also stood—Quarkus consistently yielded shorter

response times in nearly all categories. Lastly, the find-

ings mirror the wider industry trend: Quarkus is increas-

ingly the best fit for new, lightweight, cloud native appli-

cations, with Spring Boot still dominant in enterprise use

cases necessitating heavy tooling and long term support

[8-10].

5. Conclusions

The aim of this study was to directly compare the perfor-

mance potential of two popular Java frameworks, Spring

Boot and Quarkus, by implementing the same web appli-

cation using both technologies and executing an exten-

sive set of benchmarks. The benchmarks covered the

more traditional JAR based deployments along with na-

tive images compiled with GraalVM, providing a holistic

picture of how each stacks up under different conditions.

The findings indicated that Quarkus, and more so

its native version, recorded much quicker application

startup times and is thus well adapted to cloud native en-

vironments where low latency and effective scalability

are prioritized. Spring Boot, on its part, registered more

consistent and stable performance in longer and intricate

processes, an indicator of its higher appropriateness for

enterprise type applications that demand constant long

term reliability.

In comparing the handling of HTTP requests on dif-

ferent endpoints—starting from simple read access to

compound write operations and CRUD application—
Quarkus consistently demonstrated better response times

and greater throughput levels. Spring Boot, nevertheless,

exhibited good stability and consistent response rates,

even at high load levels.

Resource usage patterns analysis showed that

Quarkus native runs typically have less memory usage

under lighter load levels, whereas Spring Boot shows less

variable CPU and RAM consumption under extended pe-

riods of traffic. This balance reflects Quarkus' strength in

ephemeral and containerized deployments, as Spring

Boot remains a solid choice for traditional infrastructure

under high service duration conditions.

In short, the noted differences in performance be-

tween the two frameworks give weight to the idea that

Quarkus may be more appropriate for modern, cloud cen-

tric applications where fast startup times and low re-

source overhead are paramount. Spring Boot, on the other

hand, is still a viable and flexible choice for complex ap-

plications that require high configurability, stability, and

ecosystem support. The ultimate selection of such tech-

nologies should be based on the particular requirements

of the target system and the application environment

where it will be used.

References

[1] Ł. Wyciślik, Ł. Latusik, A. M. Kamińska, A comparative
assessment of JVM frameworks to develop

microservices, Appl. Sci. 13 (2023) 1343,

https://doi.org/10.3390/app13031343.

[2] P. Plecinski, N. Bokla, T. Klymkovych, M. Melnyk, W.

Zabierowski, Comparison of representative microservices

technologies in terms of performance for use for projects

based on sensor networks, Sensors 22 (2022) 7759,

https://doi.org/10.3390/s22207759.

[3] M. Šipek, D. Muharemagić, B. Mihaljević, A. Radovan,
Enhancing performance of cloud-based software

0

500

1000

1500

2000

0
0

:0
0

0
0

:2
0

0
0

:4
0

0
1

:0
0

0
1

:2
0

0
1

:4
0

0
2

:0
0

0
2

:2
0

0
2

:4
0

0
3

:0
0

0
3

:2
0

0
3

:4
0

0
4

:0
0

0
4

:2
0

0
4

:4
0

0
5

:0
0M

e
m

o
ry

 u
sa

g
e

 [
M

B
]

Time [min:s]

Memory usage over time under heavy load

Spring Boot - Jar Spring Boot - Native image

Quarkus - Jar Quarkus - Native image

https://doi.org/10.3390/app13031343
https://doi.org/10.3390/s22207759

Journal of Computer Sciences Institute 37 (2025) 484-491

491

applications with GraalVM and Quarkus, In 2020 43rd

International Convention on Information, Communication

and Electronic Technology (MIPRO) IEEE (2020)

1746– 1751,

https://doi.org/10.23919/MIPRO48935.2020.9245290.

[4] M. Jeleń, M. Dzieńkowski, The comparative analysis of
Java frameworks: Spring Boot, Micronaut and Quarkus,

J. Comput. Sci. Inst. 21 (2021) 287–294,

https://doi.org/10.35784/jcsi.2724.

[5] B. Silva, P. Carvalho, Migration of a microservice from

Payara Micro to Quarkus and performance analysis, In

2022 International Conference on Electrical, Computer,

Communications and Mechatronics Engineering

(ICECCME) IEEE (2022) 1- 5,

https://doi.org/10.1109/ICECCME55909.2022.9988587.

[6] O. C. Novac, D. Ghiurău, M. C. Novac, C. E. Gordan, M.
Oproescu, G. Bujdoso, Comparison of Node.Js and Spring

Boot in web development, In 2023 15th International

Conference on Electronics, Computers and Artificial

Intelligence (ECAI) IEEE (2023) 1–7,

https://doi.org/10.1109/ECAI58194.2023.10194025.

[7] D. Choma, K. Chwaleba, M. Dzieńkowski, The efficiency
and reliability of backend technologies: Express, Django,

and Spring Boot, Informatyka Automatyka Pomiary Gosp.

Ochr. Środowiska 13(4) (2023) 73–78.

[8] M. Mythily, A. S. Arun Raj, I. T. Joseph, An analysis of

the significance of Spring Boot in the market, In 2022

International Conference on Inventive Computation

Technologies (ICICT) IEEE (2022) 1277–1281,

https://doi.org/10.1109/ICICT54344.2022.9850910.

[9] M. Klymash, I. Tchaikovskyi, O. Hordiichuk-Bublivska,

Y. Pyrih, Research of microservices features in

information systems using Spring Boot, In 2020 IEEE

International Conference on Problems of

Infocommunications. Science and Technology (PIC S&T)

(2020) 507–510,

https://doi.org/10.1109/PICST51311.2020.9467911.

[10] S. Pallewatta, V. Kostakos, R. Buyya, MicroFog: A

framework for scalable placement of microservices-based

IoT applications in federated fog environments, J. Syst.

Softw. 209 (2023) 111910,

https://doi.org/10.1016/j.jss.2023.111910.

[11] H. Suryotrisongko, D. P. Jayanto, A. Tjahyanto, Design

and development of backend application for public

complaint systems using microservice Spring Boot,

Procedia Comput. Sci. 124 (2017) 736–743.

[12] M. Mythily, A. D. D. C. Durai, V. R. Kanakala, I. T.

Joseph, R. Nambiar, An extensive review of Spring Boot

testing based on business requirements of the software, In

2023 4th International Conference on Smart Electronics

and Communication (ICOSEC) IEEE (2023) 1547–1553,

https://doi.org/10.1109/ICOSEC58147.2023.10276283.

[13] S. Mohan, K. Goswami, Performance Analysis and

Comparison of Node.Js and Java Spring Boot in

Implementation of Restful Applications, Softw. Pract.

Exper. (2025), https://doi.org/10.1002/spe.3418.

[14] C. Calero, M. Polo, M. Moraga, Investigating the impact

on execution time and energy consumption of developing

with Spring, Sustain. Comput. Inform. Syst. 32 (2021)

100603, https://doi.org/10.1016/j.suscom.2021.100603.

[15] A. Navarro, J. Ponge, F. Le Mouël, C. Escoffier,
Considerations for integrating virtual threads in a Java

framework: A Quarkus example in a resource-constrained

environment, In 17th ACM International Conference on

Distributed and Event-Based Systems (DEBS’2023)
(2023), https://doi.org/10.1145/3583678.3596895.

[16] A. Sharma, K. Tahiliani, G. P. Dubey, Reactive-optimized

sentence detection in Kubernetes using OpenNLP and

native GraalVM image with framework metric

comparison, In 2023 4th International Conference for

Emerging Technology (INCET) IEEE (2023) 1–9,

https://doi.org/10.1109/INCET57972.2023.10170347.

[17] M. Gajewski, W. Zabierowski, Analysis and comparison

of the Spring framework and Play framework

performance, used to create web applications in Java, In

IEEE XVth International Conference on the Perspective

Technologies and Methods in MEMS Design (2019) 170–
173, https://doi.org/10.1109/MEMSTECH.2019.8817390.

[18] Y. Jayawardana, R. Fernando, G. Jayawardena, D.

Weerasooriya, I. Perera, A full stack microservices

framework with business modelling, In 2018 18th

International Conference on Advances in ICT for

Emerging Regions (ICTer) IEEE (2018) 78–85,

https://doi.org/10.1109/ICTER.2018.8615473.

[19] A. Ginanjar, M. Hendayun, Spring framework reliability

investigation against database bridging layer using Java

platform, Procedia Comput. Sci. 161 (2019) 1036–1045,

https://doi.org/10.1016/j.procs.2019.11.214.

[20] A. Poniszewska-Marańda, K. Stępień, M. Głowiński,
Function analysis of web services based on REST protocol

with selected frameworks, In 2021 International

Conference on Software, Telecommunications and

Computer Networks (SoftCOM) IEEE (2021) 1–6,

https://doi.org/10.23919/SoftCOM52868.2021.9559090.

https://doi.org/10.23919/MIPRO48935.2020.9245290
https://doi.org/10.35784/jcsi.2724
https://doi.org/10.1109/ICECCME55909.2022.9988587
https://doi.org/10.1109/ECAI58194.2023.10194025
https://doi.org/10.1109/ICICT54344.2022.9850910
https://doi.org/10.1109/PICST51311.2020.9467911
https://doi.org/10.1016/j.jss.2023.111910
https://doi.org/10.1109/ICOSEC58147.2023.10276283
https://doi.org/10.1002/spe.3418
https://doi.org/10.1016/j.suscom.2021.100603
https://doi.org/10.1145/3583678.3596895
https://doi.org/10.1109/INCET57972.2023.10170347
https://doi.org/10.1109/MEMSTECH.2019.8817390
https://doi.org/10.1109/ICTER.2018.8615473
https://doi.org/10.1016/j.procs.2019.11.214
https://doi.org/10.23919/SoftCOM52868.2021.9559090

