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Abstract

Malignant melanoma is an aggressive skin cancer requiring early detection for effective treatment. In this study, it is
hypothesized that the choice of activation function affects the classification performance of pre-trained models in mela-
noma detection, and that the optimal activation function varies across deep CNN architectures. The impact of various
activation functions (ReLU, LeakyReL U, ELU, GELU, Swish, Mish, PReLU) on the diagnostic accuracy of ResNet152,
DenseNet201, and EfficientNet-B4 models was investigated. The study was conducted using a combined ISIC dataset,
comprising dermoscopic images collected between 2018 and 2020. Findings indicate EfficientNet-B4 with LeakyReLU
achieved the highest accuracy of 90.5%, while DenseNet201 benefited most from ReLU (90.3%). Results confirm the
influence of activation function selection, demonstrating architecture-specific optimal choices for enhanced classification.
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Streszczenie

Czerniak zlosliwy jest agresywnym nowotworem skory, ktorego skuteczne leczenie wymaga wczesnego wykrycia. W
niniejszym badaniu postawiono hipoteze, ze wybor funkcji aktywacji wptywa na skutecznos¢ klasyfikacji wstepnie wy-
trenowanych modeli w wykrywaniu czerniaka oraz ze optymalna funkcja aktywacji rozni si¢ w zaleznosci od architektury
glebokich sieci CNN. Zbadano wplyw roznych funkcji (ReLU, LeakyReLU, ELU, GELU, Swish, Mish, PReLU) akty-
wacji na doktadno$¢ diagnostyczng modeli ResNet152, DenseNet201 i EfficientNet-B4. Badanie przeprowadzono przy
uzyciu potaczonego zbioru danych ISIC, zawierajagcego obrazy dermatoskopowe zebrane w latach 2018—2020. Wyniki
wskazuja, ze model Effi-cientNet-B4 z funkcja LeakyReLU osiagnat najwyzsza doktadno$¢ wynoszaca 90,5%, natomiast
model DenseNet201 uzyskat najlepsze wyniki przy uzyciu funkcji ReLU (90,3%). Wyniki potwierdzaja wptyw wyboru
funkcji aktywacji, wykazujac optymalne wybory specyficzne dla architektury w celu ulepszenia klasyfikacji.

Stowa kluczowe: czerniak; rak skory; konwolucyjne sieci neuronowe; funkcja aktywacji
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1. Introduction its early signs, which may be overlooked by both individ-
uals and medical professionals [3].

While conventional diagnostic practices such as der-
moscopic assessment and clinical visual examination
continue to be essential tools, they are inherently limited
by subjective interpretation and inter-observer variabil-
ity. Dermoscopy improves the visualization of skin lesion
structures, enhancing diagnostic reliability, but still
achieves only about 80% accuracy in real-world clinical
environments [4]. These limitations underscore the ur-
gent need for automated and more consistent diagnostic
approaches.

In recent years, deep learning - particularly through
Convolutional Neural Networks (CNNs) has shown ex-
ceptional promise in the field of medical imaging. CNNs
can extract complex features from dermoscopic images,
often delivering diagnostic results that rival or exceed
those of dermatologists. Previously, models like Effi-
cientNet, DenseNet201, and ResNet152 have been suc-
cessfully applied to the classification of benign versus
malignant skin lesions. However, performance in such
tasks is not solely dictated by architecture or dataset; the

Cutaneous melanoma remains among the most danger-
ous and rapidly progressing skin cancers globally, with
its occurrence steadily increasing, especially in popula-
tions with lighter skin tones [1]. Though it is less com-
mon than non-melanoma skin cancers, melanoma is re-
sponsible for a disproportionately high number of skin
cancer-related fatalities. Globally, over 325,000 new
cases are identified each year, and nearly 57,000 people
lose their lives to the disease annually [2]. Projections
from the International Agency for Research on Cancer
(IARC) suggest that the number of new melanoma cases
could grow by more than 50% from 2020 to 2040, even-
tually exceeding 500,000 cases per year. Deaths at-
tributed to melanoma are also expected to rise beyond
100,000 annually [2]. Contributing factors to this upward
trend include excessive exposure to ultraviolet (UV) ra-
diation, often due to tanning behaviours and increased
outdoor activity during summer months, as well as an ag-
ing global population. Early-stage diagnosis is critical for
improving survival rates, yet this remains difficult due to
the disease's often silent progression and the subtlety of
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choice of activation function within a neural network
plays a critical role in its ability to learn non-linear rep-
resentations and generalize to new data [5]. The motiva-
tion behind this research lies in leveraging advanced deep
learning technologies to enhance the early and accurate
diagnosis of malignant melanoma, a potentially deadly
skin cancer. By exploring the role of activation functions
across high-performing CNN architectures, this study fo-
cuses on evaluating the effects of different activation
functions - including ReLU, LeakyReLU, ELU, GELU,
Swish, Mish, and PReLU when applied as the final acti-
vation layer in pre-trained deep learning models. By sys-
tematically analyzing these functions in ResNetl152,
DenseNet201, and EfficientNet-B4 architectures, the re-
search aim to determine how the activation mechanism
influences classification outcomes on dermoscopic da-
tasets. This represents a nuanced approach to optimizing
melanoma detection pipelines, targeting the model’s in-
ternal transformation process rather than altering the ar-
chitecture or input data alone.

The hypothesis is that certain advanced activation
functions, particularly those with adaptive or smooth
non-linearity like Mish or Swish, will provide superior
performance in terms of classification metrics (such as
precision and Fl-score) compared to traditional activa-
tions like ReLU. Evaluations will be conducted using
merged ISIC datasets to ensure a robust and diverse im-
age set. The outcomes of this comparative study may
point toward optimal activation function choices that en-
hance generalization, especially when paired with state-
of-the-art CNNss in medical image classification tasks.

The ultimate goal of this research is to identify acti-
vation functions that maximize diagnostic accuracy for
melanoma detection in pretrained networks, thereby con-
tributing to the development of a more reliable and fully
automated screening system. The anticipated benefits in-
clude reducing human error in clinical diagnosis, expe-
diting early detection, and ultimately improving patient
prognoses through timely treatment interventions.

2. Literature review

Recent progress in the use of deep learning, especially
convolutional neural networks (CNNs), has greatly ad-
vanced the automatic classification and detection of mel-
anoma and other skin-related conditions. Numerous stud-
ies have demonstrated the effectiveness of deep models
by applying various architectural innovations and optimi-
zation techniques to improve classification performance.

EfficientNet, known for its scalable and well-opti-
mized design, has emerged as a particularly effective ar-
chitecture in this domain. For instance, Runyuan Zhang
(2019) showed that the EfficientNet-B6 variant, en-
hanced through neural architecture search, achieved
a strong AUC-ROC score of 0.917 in melanoma detec-
tion tasks [6]. Similarly, S. M. Jaisakthi (2023) applied
transfer learning with the EfficientNet architecture and
employed the Ranger optimizer, which further boosted
performance, yielding an AUC-ROC of 0.9681 [7].
These results emphasize EfficientNet's ability to capture
intricate dermoscopic image features. However, beyond

the architecture and optimization methods, one of the of-
ten-overlooked yet impactful components in such net-
works is the activation function, which fundamentally af-
fects learning dynamics and classification outcomes.

Activation functions are crucial for deep learning
models, enabling them to learn complex non-linear rep-
resentations and significantly impacting their training
and classification performance. Functions like ReLU,
while popular for their computational efficiency and abil-
ity to introduce sparsity [8], can suffer from the "dying
ReLU" problem where neurons become inactive due to
zero gradients for negative inputs or the derivative being
zero for negative inputs, hindering model training and
overall classification accuracy. Advanced activation
functions such as LeakyReLU, ELU, GELU, Swish,
Mish, and PReLU were developed to mitigate these is-
sues by allowing small gradients for negative inputs or
by introducing smoother, non-monotonic properties,
which can lead to faster convergence [9], improved gen-
eralization [8], and potentially higher classification re-
sults in tasks like image-based diagnosis of cutaneous
melanoma.

The introduction of activation functions into neural
networks is fundamental for enabling nonlinear expres-
sion capabilities, which in turn enhances accuracy. Dif-
ferent activation functions, including ReLU,
LeakyReLU, ELU, Swish, Mish, and PReLU, exhibit
varying performance across diverse neural network ar-
chitectures and datasets, directly influencing the model's
ability to fit results and improve classification accuracy.
Wang Hao (2020) demonstrated that selection of an ap-
propriate activation function is critical as it can help bal-
ance accuracy and speed, and even improve model per-
formance without requiring an increase in the dataset size
[10]. Deep residual learning has likewise proven useful.
Lequan Yu (2016) utilized fully convolutional residual
networks and multi-scale contextual cues to achieve
highly accurate segmentation and classification of skin
lesions, which are important for distinguishing malignant
from benign findings [11].

To deal with the often limited availability of anno-
tated medical images, researchers have employed strate-
gies like data augmentation and transfer learning. Hosny
Khalid M. (2019) used AlexNet in conjunction with im-
age augmentation techniques to build a robust lesion clas-
sification model, improving its reliability across diverse
datasets [12]. Hybrid approaches have also shown poten-
tial. Mahbod Amirreza (2019) extracted deep features
from pretrained CNNs such as VGG16, ResNet-18, and
AlexNet, and used them in tandem with support vector
machines (SVMs) for final classification. This combina-
tion leveraged the strengths of both deep and traditional
machine learning techniques, achieving high predictive
accuracy [13].

Activation functions are vital components in Convo-
lutional Neural Networks (CNNGs) for tasks like cutane-
ous melanoma diagnosis, as they introduce non-linearity
and significantly influence the model's accuracy by de-
termining information flow between layers. This study
specifically demonstrates that the choice of activation
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function directly impacts a CNN's performance in classi-
fying skin lesions, with a parameterized Leaky ReLU
function outperforming other nonlinear activation func-
tions in a proposed CNN model for melanoma recogni-
tion, even with limited datasets. Therefore, selecting the
appropriate activation function is crucial for effective
model training and achieving higher prediction accuracy
in machine learning-based melanoma diagnosis [14].

Collectively, these works reflect the expanding
toolkit available for improving melanoma diagnosis us-
ing CNNs. While architectures like EfficientNet and Res-
Net, along with data augmentation, transfer learning, and
hybrid models, contribute significantly to model perfor-
mance, the research centres on a critical yet often under-
analysed component - the activation function.

3. Material and Methods

This study aims to assess the impact of different activa-
tion functions on the performance of pretrained deep
learning models for classifying skin lesions from der-
moscopic images. It begins with a description of the da-
taset, followed by an overview of the experimental
setup. The analysis focuses on pretrained architec-
tures—ResNet152, DenseNet201, and EfficientNet-
B4—with various activation functions (ReLU,
LeakyReLU, ELU, GELU, Swish, Mish, PReLU) ap-
plied as the final non-linear layer. Details of the training
pipeline, including preprocessing, augmentation, and
evaluation metrics, are provided. Finally, the results are
compared across activation functions to evaluate their
influence on classification accuracy and convergence.

3.1. Dataset

This study utilizes a comprehensive dataset composed of
17,114 high-quality dermoscopic images, curated to sup-
port research in dermatological image analysis and im-
prove computational diagnostic methods for melanoma
detection [15]. The dataset is formed by aggregating mul-
tiple subsets from the International Skin Imaging Collab-
oration (ISIC) challenges conducted in 2018, 2019, and
2020, resulting in a balanced and diverse image reposi-
tory suitable for training and evaluating deep learning
models [16]. All images were sourced directly from the
official ISIC platform, with careful selection criteria ap-
plied to reduce the risk of class imbalance presented in
Figure 1.

Available in both JPEG and DICOM formats [17], the
images are accompanied by structured metadata, includ-
ing patient-specific information such as ID, gender, age,
and lesion location, along with the binary ground truth
labels indicating whether the lesion is benign or malig-
nant. This structured labelling supports supervised learn-
ing and allows for a consistent evaluation across experi-
mental setups.

" i

Figure 1: Representative examples of skin lesions from the merged
ISIC datasets.

To investigate the effect of activation functions on
melanoma classification performance, the dataset was
split into training, validation, and testing sets. Of the total
17,114 images, 14,204 were used for training, and the re-
maining 2,910 were equally split between the validation
and testing phases, as detailed in Table 1. The class dis-
tribution maintained a 70-30 ratio in favour of benign le-
sions, reflecting the prevalence seen in real-world clinical
datasets. The data partitioning strategy was based on the
approach of Serra Aksoy, who used a similar 83—-17%
training-to-evaluation split and reported encouraging
classification outcomes [18].

Table 1: Number of the image data from ISIC-Combined dataset

Class Total Training | Testing | Validation
Malignant | 5192 4312 441 439
Benign 11922 | 9892 1014 1016
Total 17114 | 14204 1455 1455

3.2. Data preprocessing

To support the evaluation of activation functions in deep
learning models for melanoma classification, a robust
data preprocessing pipeline was developed to enhance
model generalization and reduce the risk of overfitting.
The preprocessing steps were designed to standardize the
dermoscopic images and introduce realistic variability,
thereby simulating the diversity of real-world clinical
scenarios. Specific attention was paid to resizing proce-
dures to match the input requirements of each pretrained
architecture under investigation.

The data augmentation pipeline included several
transformations aimed at increasing the representational
diversity of the dataset. All images were resized to a fixed
dimension according to the input size expected by each
CNN model. To simulate natural variability in skin lesion
imaging, random horizontal and vertical flips were ap-
plied, along with random rotations to account for shifts
in camera angle and patient positioning. Color jittering
techniques were used to alter image brightness and con-
trast, emulating differences in lighting during image cap-
ture. Following augmentation, the images were converted
to tensors and normalized based on the mean and stand-
ard deviation values of the ImageNet dataset: [0.485,
0.456, 0.406] for mean and [0.229, 0.224, 0.225] for
standard deviation [19]. This normalization ensured com-
patibility with the pretrained networks and contributed to
more stable and efficient training dynamics across exper-
iments involving different activation functions.
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3.3. Activation Functions

3.3.1. Rectified Linear Unit, Leaky ReLLU, and Para-
metric ReLU

These activation functions are foundational in deep learn-
ing, primarily addressing the vanishing gradient problem.
ReLU is defined as Formulae 1, outputting the input di-
rectly if positive, and zero otherwise. While simple and
computationally efficient, it can suffer from the "dying
ReLU" problem, where neurons become inactive for neg-
ative inputs [20].

f(x) = max (0,x) €))

LeakyReLU mitigates this by introducing a small,
non-zero slope for negative inputs, defined as Formulae
2 where a is a small constant (e.g., 0.01). This allows gra-
dients to flow even when the input is negative. PReLU
extends LeakyReLU by making a a learnable parameter,
allowing the network to adaptively determine the optimal
slope for negative inputs, potentially improving model
performance [8].

f(x) = max (ax, x) @)
3.3.2. Exponential Linear Unit and Gaussian Error
Linear Unit

These activation functions aim to produce more robust
and stable learning. ELU computes by Formulae 3 and 4.
It combines the benefits of ReLU (for positive inputs)
with a small, negative output for negative inputs, which
can push mean activations closer to zero, leading to faster
learning by reducing the "bias shift" problem [8].

f(x) =xforx>0 3)

fx) =a(e*—1)forx <0 4)

GELU is a more recent and highly effective activation
function, particularly in transformer-based models [8]. It
is defined as Formulae 5, where ®(x) is the cumulative
distribution function for the standard Gaussian distribu-
tion. GELU incorporates stochasticity, scaling the input
by its probability of being greater than zero, which can
lead to smoother and more accurate gradient estimates.

f(x) = xP(x) (5)

3.3.3.Swish and Mish

These are self-gated activation functions known for their
smoothness and strong performance. Swish is defined as
Formulae 6, where f is often a learnable parameter or set
to 1. Its smooth, non-monotonic shape allows for better
information propagation and can help in avoiding dead
neurons [8].

f(x) = x - sigmoid(fx) (6)

Mish is another highly effective and smooth activa-
tion function, defined as Formulae 7, where
softplus(x) = In (1 + e*) [8]. Mish's non-monotonic-
ity and smoothness are believed to contribute to its strong
empirical performance across various tasks, often

outperforming ReLU and Swish in deeper networks due
to its ability to retain small negative inputs.

f(x) = x - tanh(softplus(x)) 7

3.4. Evaluation metrics

To assess the impact of different activation functions on
the classification of dermoscopic images, each pretrained
model’s performance was evaluated using a set of stand-
ard metrics: accuracy, precision, recall, and F1-score.
These metrics were computed based on Formulas 8-11.
Considering the class imbalance present in the dataset, all
metrics were calculated using the weighted parameter to
ensure that underrepresented classes were appropriately
factored into the overall evaluation. In this context, True
Positives (TP) and True Negatives (TN) refer to instances
where the model correctly identified lesions, whereas
False Positives (FP) and False Negatives (FN) represent
misclassified cases.

Accuracy = TP+TN (3
TP+TN +FP+FN

Precision = % ©))

Recall (sensitivity) = % (10)

F1score = ZH’-I—ZF% (11)

3.5. Experimental setup

Every experiment was performed using an identical local
hardware configuration. Given the limitations imposed
by the 8GB VRAM available on the NVIDIA GeForce
RTX 3060 Ti, the study focused on using pretrained mod-
els with moderate memory demands. The model fine-tun-
ing, including the integration and testing of various acti-
vation functions as the final non-linear layer, was entirely
carried out on a local machine to retain full control over
training parameters.
The detailed hardware environment was as follows:
e Graphics Card: NVIDIA GeForce RTX 3060 Ti,
equipped with 8GB VRAM,
e Processor: Intel Core i5-10600K, 4.1 GHz
e Memory: 16GB DDR4, clocked at 3200 MHz
This configuration offered sufficient performance for
evaluating the impact of various activation functions
without exceeding memory constraints, enabling con-
sistent testing across all models.

3.6. Hyper-parameter Configuration

For all evaluated architectures—DenseNet-121, ResNet-
50, and EfficientNet-BO—model fine-tuning was con-
ducted using the AdamW optimizer with a learning rate
set to 0.0001. The loss function employed was CrossEn-
tropyLoss, adjusted with class weights [1.44, 3.29] to
mitigate class imbalance. A weight decay of 0.001 was
applied to prevent overfitting. Due to differing memory
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requirements, batch size was set to 32 for both DenseNet
and ResNet models, while for EfficientNet-B0, a reduced
batch size of 16 was necessary to accommodate GPU
memory limitations. All other training parameters and
data preprocessing procedures remained consistent
across architectures to ensure comparability of results.

3.7. Research scenario

1. Environment Setup

To establish a consistent framework for experimentation,
the research environment was configured with Python
version 3.11 and a set of essential libraries tailored for
deep learning and image processing. Key dependencies
included PyTorch (2.4.1) for model implementation,
NumPy (1.23.5) for numerical operations, and Pandas
(2.2.2) for data management. Visualization of training
dynamics and evaluation outcomes was supported by
Matplotlib (3.9.2). The system was explicitly set to lev-
erage GPU acceleration, designating the CUDA-enabled
device as the default compute backend to enhance train-
ing efficiency, particularly during the evaluation of mul-
tiple activation functions.

2. Model Fine-Tuning with Activation Functions

The model adaptation phase began with preprocessing
steps such as resizing dermoscopic images to architec-
ture-specific dimensions (ranging from 224x224 to
380%380), normalization, and augmentations to increase
training set variability. Pretrained models were modified
only at their final activation layer to incorporate and com-
pare different activation functions: ReLU, LeakyReLU,
ELU, GELU, Swish, Mish, and PReLU, respectively.
The models were trained on a curated subset of 14,204
labeled images from the ISIC dataset, with training gov-
erned by techniques like weight decay to optimize learn-
ing and mitigate overfitting across function variants.

3. Model Evaluation

Each trained model configuration was tested using
a hold-out test set of 1,455 dermoscopic images, none of
which were seen during training. The objective was to
determine how each activation function influenced the
model's ability to correctly classify lesions as either be-
nign or malignant.

4. Performance Evaluation and Comparative Analysis
Model performance under each activation function was
evaluated using standard classification metrics, including
accuracy, precision, recall (sensitivity), and F1-score. To
address class imbalance within the dataset, all metrics
were calculated using weighted averaging, ensuring a fair
assessment across different lesion types. A comprehen-
sive comparative analysis was then conducted across all
selected pre-trained architectures: ResNet152, Dense-
Net201, and EfficientNet-B4 to examine the influence of
activation function choice on diagnostic accuracy. This
analysis aimed to identify activation functions that con-
sistently enhance predictive performance in the context
of automated melanoma detection.

4. Results

Following the training phase, each model configura-
tion was evaluated to determine its classification

performance and consistency. Predictions were gener-
ated on the test dataset and compared against the corre-
sponding ground truth labels. The analysis focused on as-
sessing the influence of different activation functions on
model behavior when integrated into the final layer of
pretrained architectures.

To ensure a consistent evaluation protocol, various
activation functions were integrated into the final layer of
pretrained CNN models, followed by additional training
for 5 epochs. This brief fine-tuning was conducted to al-
low the models to adjust to the new nonlinearities and to
assess whether further training would improve perfor-
mance. The goal was to evaluate how different activation
functions influence inference performance on dermo-
scopic test data. Each model was trained and evaluated
once per activation function.

To enhance the reliability and consistency of the eval-
uation, each model configuration was evaluated over 10
independent runs, and the resulting performance metrics
were averaged to mitigate random variation. A thorough
assessment conducted on the test dataset revealed mean-
ingful insights, with the results for the best-performing
model-activation function pairs clearly outlined in Table
2. Among these, EfficientNet-B4 paired with
LeakyReLU achieved the highest overall results across
all evaluated metrics, including accuracy (90.5%) and
Fl-score (90.4%). DenseNet201 using the standard
ReLU function followed closely, also delivering strong
performance. Interestingly, ResNetl52 combined with
LeakyReLU despite not being the leading model, still
produced competitive scores across the board. These
findings underscore the significant influence that activa-
tion functions can have, even at the inference stage, on
the predictive capabilities of pretrained convolutional
networks in skin lesion classification tasks.

Table 2: Performance models with best activation functions
across 10 test repetitions (mean + standard deviation)

Model Accuracy | Precision | Recall | Fl-Score
(%) (%) (%) (%)
ResNet152 89.0 88.9 89.0 89.0
with Leaky- +0.08 +0.10 +0.11 +0.10
ReLU
DenseNet201 90.3 90.2 90.3 90.3
with ReLU +0.04 +0.06 +0.06 +0.04
EfficientNet-B4 | 90.5 90.5 90.5 90.4
with Leaky- +0.15 +0,12 +0.13 +0.15
ReLU

These results highlight how different activation func-
tions can influence not just overall performance metrics
but also specific error types, which is particularly im-
portant in medical diagnostics.

Although Table 3 shows that the original ResNet152
model (with its default configuration) slightly outper-
formed the LeakyReLU-modified version in overall ac-
curacy (89.2% vs. 89.0%) and Fl-score (89.4% vs.
89.0%). These results suggest that while default ReLU
remains a strong baseline, LeakyReLU provides a com-
parable and in some broader comparisons, slightly better
alternative, particularly when evaluated in isolation
across diverse activation setups.
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Table 3: Performance comparison of ResNet152 before and after
applying the LeakyReLU activation function

Model Accuracy | Precision | Recall | F1-Score
(%) (%) (%) (%)
ResNet152 89.2 89.8 90.2 89.4
+0.014 +0.012 +0.014 | +£0.013
ResNet152 89.0 88.9 89.0 89.0
with Leaky- +0.08 +0.10 +0.11 +0.10
ReLU

The comparison of activation functions applied to the
ResNet152 architecture reveals that LeakyReLU delivers
the most consistent and high-performing results among
all tested functions. As shown in the bar charts (Figure 2
and 3), it achieved the highest F1-score (0.890) and ac-
curacy (0.890), slightly outperforming the standard
ReLU function (F1 = 0.887, Acc = 0.888). Other activa-
tion functions such as GELU and Swish+SiLU demon-
strated moderate results, while PReLU, SELU, and Mish
performed significantly worse across both metrics.
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In conclusion, LeakyReLU emerges as the most ro-
bust activation function for this classification task when
applied to the pretrained ResNet152 model, maintaining
high predictive performance while slightly reducing the
risk of neuron inactivity compared to traditional ReLU.

When comparing to the baseline performance shown
in Table 4, the application of the ReLU function clearly
improves the model's predictive ability. Accuracy in-
creased from 88.3% to 90.3%, and F1-score rose from
88.5% to 90.3%, indicating a consistent gain in both pre-
cision and recall.

Table 4: Performance comparison of DenseNet201 before and af-
ter applying the ReLU activation function

Model Accuracy | Precision | Recall | F1-Score
(%) (%) (%) (%)
DenseNet201 88.3 89.3 88.2 88.5
+0.004 +0.003 +0.006 | +0.005
DenseNet201 90.3 90.2 90.3 90.3
with ReLU +0.04 +0.06 +0.06 +0.04

The comparison of activation functions for Dense-
Net201 shows consistently high performance across all
tested options, with ReL U slightly outperforming others.
As illustrated in the Figure 4, ReLU achieved the highest
F1-score (0.903) and accuracy (0.903), closely followed
by LeakyReLU (F1 = 0.901, Acc = 0.901) and PReLU
(F1 =10.898, Acc = 0.899). The differences between the
functions are minimal, with all metrics staying within
a narrow performance range, suggesting that Dense-
Net201 is relatively robust to the choice of activation.

Accuracy by Activation Function
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Figure 5: DenseNet201- F1-score by activation function.

These results suggest that while DenseNet201 per-
forms reliably across various nonlinearities, ReLU re-
mains the most effective activation function for this ar-
chitecture in the context of melanoma classification, of-
fering slight yet consistent improvements in key metrics.

Interestingly, as shown in Table 5, the use of
LeakyReLU led to a marginal performance shift com-
pared to the default EfficientNet-B4 setup. While the
baseline model achieved a slightly higher F1-score
(90.6% vs. 90.4%) and precision, the differences across
all metrics remain negligible (< 0.2%). This indicates that
the switch to LeakyReLU does not introduce meaningful
performance degradation, and may even provide slight
advantages in specific use cases.
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Table 5: Performance comparison of EfficientNet-B4 before and
after applying the LeakyReLU activation function

Model Accuracy | Precision | Recall F1-Score
(%) (%) (%) (%)
EfficientNet-B4 | 90.4 90.8 90.4 90.6
+0.003 +0.002 +0.002 +0.003
EfficientNet-B4 | 90.5 90.5 90.5 90.4
with Leaky- +0.15 +0.12 +0.13 +0.15
ReLU

The evaluation of activation functions for Efficient-
Net-B4 highlights LeakyReLU as the top-performing op-
tion, achieving the highest accuracy (0.905) and F1-score
(0.905) among all tested nonlinearities. ReLU and GELU
followed closely with nearly identical scores (F1 =
0.902-0.904), suggesting a high level of stability in this
architecture regardless of activation function.

Accuracy by Activation Function

o
[0.903 | 0.905) 0.904

[0.864] [0.863

Accuracy

[0.445| E
~ |0.390

.l ~ >
& £ 3
2 & o
Na =

%

> S
< & i E

Figure 6: EfficientNet-B4 — accuracy by activation function.
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Figure 7: EfficientNet-B4 — F1-score by activation function.

Activation functions such as PReLU and SELU per-
formed significantly worse in this context, with accuracy
scores falling below 50% (Figure 6-7), reinforcing that
not all advanced activations are well-suited for every pre-
trained architecture. In conclusion, EfficientNet-B4
paired with LeakyReLU maintains strong, balanced per-
formance, making it a reliable choice for skin lesion clas-
sification tasks, especially in settings where small perfor-
mance gains are meaningful.
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5. Discussion

This study investigated the influence of various activa-
tion functions on the classification performance of pre-
trained convolutional neural networks (CNNs) in the
context of melanoma detection. By substituting the orig-
inal activation functions with alternatives such as
LeakyReLU, PReLU, GELU, Swish, SELU, and Mish.
The experiments provided valuable insight into how

different nonlinear transformations affect model behav-
ior during inference, without the need for additional
training or fine-tuning.

The results offer strong empirical support for the ini-
tial hypothesis, demonstrating that activation function se-
lection has a measurable effect on key performance met-
rics, even when applied to fixed, pretrained architectures.

Marked differences were observed across activation
functions. In particular, PReLU and SELU consistently
yielded lower performance across two tested models, un-
derperforming in both accuracy and F1-score when com-
pared to ReLU, LeakyReLU, and GELU. This consistent
underperformance suggests that certain activation func-
tions may be suboptimal for facilitating feature propaga-
tion or maintaining gradient stability in pretrained net-
works used for this task.

The findings also reinforce the second hypothesis: the
optimal activation function varies across CNN architec-
tures. For instance, ResNet152 achieved its highest accu-
racy (89.0%) with LeakyReLU, closely followed by
ReLU. DenseNet201, on the other hand, performed best
with ReLU, improving upon its baseline by approxi-
mately 2 percentage points. EfficientNet-B4 is the high-
est-performing model overall, with 90.5% accuracy
showed optimal results with LeakyReLU, although both
GELU and ReLU remained highly competitive. The rel-
atively small performance gap among these top activa-
tions for EfficientNet-B4 may point to its robustness and
adaptability with respect to activation function choice.

These results underscore the architecture-dependent
nature of activation function effectiveness. Traditional
activations such as ReLU continue to demonstrate strong
performance in medical image classification, while the
introduction of more complex or less conventional non-
linearities does not necessarily lead to improvements and
may, in fact, hinder performance in certain settings.

In line with current literature, this study reaffirms the
competitiveness of EfficientNet and DenseNet architec-
tures in dermatological diagnostics. However, it adds
a novel contribution by systematically comparing activa-
tion functions at the inference level, without model re-
training.

6. Conclusion

Although medical technologies have advanced signifi-
cantly, there remains a pressing need for automated sys-
tems to assist in disease diagnosis. Modern algorithms
and models continue to enhance the precision of medical
data classification [21]. This study investigated the influ-
ence of various activation functions on the performance
of pretrained convolutional neural networks in the task of
binary skin lesion classification. The empirical results
demonstrate that the activation function plays a signifi-
cant role in determining the effectiveness of a model,
even when the architecture and weights remain un-
changed.

ReLU and LeakyReLU consistently achieved the
highest classification metrics across most architectures,
indicating their robustness and reliability in this medical
imaging context. In contrast, functions such as PReLU
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and SELU were associated with noticeably lower perfor-
mance, suggesting limited compatibility with the tested
CNNe s in this specific task.

Importantly, the optimal activation function was not
consistent across all models, but instead varied depend-
ing on the architecture. For instance, LeakyReLU yielded
the best results in ResNet152 and EfficientNet-B4, while
DenseNet201 performed best with ReLU. This architec-
ture-specific sensitivity underscores the importance of
aligning nonlinear transformations with model structure
to maximize performance.

These findings highlight the need for deliberate and
context-aware selection of activation functions when de-
ploying pretrained models in sensitive applications such
as medical diagnostics. Even when architectures are fixed
and no retraining is performed, internal components like
activation functions can be optimized to enhance accu-
racy and reliability. Future research may explore adaptive
or learnable activations, test broader datasets, or assess
how these functions perform in full end-to-end training
pipelines.
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