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Abstract 

Malignant melanoma is an aggressive skin cancer requiring early detection for effective treatment. In this study, it is 

hypothesized that the choice of activation function affects the classification performance of pre-trained models in mela-

noma detection, and that the optimal activation function varies across deep CNN architectures. The impact of various 

activation functions (ReLU, LeakyReLU, ELU, GELU, Swish, Mish, PReLU) on the diagnostic accuracy of ResNet152, 

DenseNet201, and EfficientNet-B4 models was investigated. The study was conducted using a combined ISIC dataset, 

comprising dermoscopic images collected between 2018 and 2020. Findings indicate EfficientNet-B4 with LeakyReLU 

achieved the highest accuracy of 90.5%, while DenseNet201 benefited most from ReLU (90.3%). Results confirm the 

influence of activation function selection, demonstrating architecture-specific optimal choices for enhanced classification. 
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Streszczenie 

Czerniak złośliwy jest agresywnym nowotworem skóry, którego skuteczne leczenie wymaga wczesnego wykrycia. W 

niniejszym badaniu postawiono hipotezę, że wybór funkcji aktywacji wpływa na skuteczność klasyfikacji wstępnie wy-
trenowanych modeli w wykrywaniu czerniaka oraz że optymalna funkcja aktywacji różni się w zależności od architektury 
głębokich sieci CNN. Zbadano wpływ różnych funkcji (ReLU, LeakyReLU, ELU, GELU, Swish, Mish, PReLU) akty-
wacji na dokładność diagnostyczną modeli ResNet152, DenseNet201 i EfficientNet-B4. Badanie przeprowadzono przy 

użyciu połączonego zbioru danych ISIC, zawierającego obrazy dermatoskopowe zebrane w latach 2018–2020. Wyniki 

wskazują, że model Effi-cientNet-B4 z funkcją LeakyReLU osiągnął najwyższą dokładność wynoszącą 90,5%, natomiast 
model DenseNet201 uzyskał najlepsze wyniki przy użyciu funkcji ReLU (90,3%). Wyniki potwierdzają wpływ wyboru 
funkcji aktywacji, wykazując optymalne wybory specyficzne dla architektury w celu ulepszenia klasyfikacji. 
Słowa kluczowe: czerniak; rak skóry; konwolucyjne sieci neuronowe; funkcja aktywacji 
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1. Introduction 

Cutaneous melanoma remains among the most danger-

ous and rapidly progressing skin cancers globally, with 

its occurrence steadily increasing, especially in popula-

tions with lighter skin tones [1]. Though it is less com-

mon than non-melanoma skin cancers, melanoma is re-

sponsible for a disproportionately high number of skin 

cancer-related fatalities. Globally, over 325,000 new 

cases are identified each year, and nearly 57,000 people 

lose their lives to the disease annually [2]. Projections 

from the International Agency for Research on Cancer 

(IARC) suggest that the number of new melanoma cases 

could grow by more than 50% from 2020 to 2040, even-

tually exceeding 500,000 cases per year. Deaths at-

tributed to melanoma are also expected to rise beyond 

100,000 annually [2]. Contributing factors to this upward 

trend include excessive exposure to ultraviolet (UV) ra-

diation, often due to tanning behaviours and increased 

outdoor activity during summer months, as well as an ag-

ing global population. Early-stage diagnosis is critical for 

improving survival rates, yet this remains difficult due to 

the disease's often silent progression and the subtlety of 

its early signs, which may be overlooked by both individ-

uals and medical professionals [3]. 

While conventional diagnostic practices such as der-

moscopic assessment and clinical visual examination 

continue to be essential tools, they are inherently limited 

by subjective interpretation and inter-observer variabil-

ity. Dermoscopy improves the visualization of skin lesion 

structures, enhancing diagnostic reliability, but still 

achieves only about 80% accuracy in real-world clinical 

environments [4]. These limitations underscore the ur-

gent need for automated and more consistent diagnostic 

approaches. 

In recent years, deep learning - particularly through 

Convolutional Neural Networks (CNNs) has shown ex-

ceptional promise in the field of medical imaging. CNNs 

can extract complex features from dermoscopic images, 

often delivering diagnostic results that rival or exceed 

those of dermatologists. Previously, models like Effi-

cientNet, DenseNet201, and ResNet152 have been suc-

cessfully applied to the classification of benign versus 

malignant skin lesions. However, performance in such 

tasks is not solely dictated by architecture or dataset; the 
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choice of activation function within a neural network 

plays a critical role in its ability to learn non-linear rep-

resentations and generalize to new data [5].  The motiva-

tion behind this research lies in leveraging advanced deep 

learning technologies to enhance the early and accurate 

diagnosis of malignant melanoma, a potentially deadly 

skin cancer. By exploring the role of activation functions 

across high-performing CNN architectures, this study fo-

cuses on evaluating the effects of different activation 

functions - including ReLU, LeakyReLU, ELU, GELU, 

Swish, Mish, and PReLU when applied as the final acti-

vation layer in pre-trained deep learning models. By sys-

tematically analyzing these functions in ResNet152, 

DenseNet201, and EfficientNet-B4 architectures, the re-

search aim to determine how the activation mechanism 

influences classification outcomes on dermoscopic da-

tasets. This represents a nuanced approach to optimizing 

melanoma detection pipelines, targeting the model’s in-
ternal transformation process rather than altering the ar-

chitecture or input data alone. 

The hypothesis is that certain advanced activation 

functions, particularly those with adaptive or smooth 

non-linearity like Mish or Swish, will provide superior 

performance in terms of classification metrics (such as 

precision and F1-score) compared to traditional activa-

tions like ReLU. Evaluations will be conducted using 

merged ISIC datasets to ensure a robust and diverse im-

age set. The outcomes of this comparative study may 

point toward optimal activation function choices that en-

hance generalization, especially when paired with state-

of-the-art CNNs in medical image classification tasks. 

The ultimate goal of this research is to identify acti-

vation functions that maximize diagnostic accuracy for 

melanoma detection in pretrained networks, thereby con-

tributing to the development of a more reliable and fully 

automated screening system. The anticipated benefits in-

clude reducing human error in clinical diagnosis, expe-

diting early detection, and ultimately improving patient 

prognoses through timely treatment interventions. 

2. Literature review 

Recent progress in the use of deep learning, especially 

convolutional neural networks (CNNs), has greatly ad-

vanced the automatic classification and detection of mel-

anoma and other skin-related conditions. Numerous stud-

ies have demonstrated the effectiveness of deep models 

by applying various architectural innovations and optimi-

zation techniques to improve classification performance. 

EfficientNet, known for its scalable and well-opti-

mized design, has emerged as a particularly effective ar-

chitecture in this domain. For instance, Runyuan Zhang 

(2019) showed that the EfficientNet-B6 variant, en-

hanced through neural architecture search, achieved  

a strong AUC-ROC score of 0.917 in melanoma detec-

tion tasks [6]. Similarly, S. M. Jaisakthi (2023) applied 

transfer learning with the EfficientNet architecture and 

employed the Ranger optimizer, which further boosted 

performance, yielding an AUC-ROC of 0.9681 [7]. 

These results emphasize EfficientNet's ability to capture 

intricate dermoscopic image features. However, beyond 

the architecture and optimization methods, one of the of-

ten-overlooked yet impactful components in such net-

works is the activation function, which fundamentally af-

fects learning dynamics and classification outcomes. 

Activation functions are crucial for deep learning 

models, enabling them to learn complex non-linear rep-

resentations and significantly impacting their training 

and classification performance. Functions like ReLU, 

while popular for their computational efficiency and abil-

ity to introduce sparsity [8], can suffer from the "dying 

ReLU" problem where neurons become inactive due to 

zero gradients for negative inputs or the derivative being 

zero for negative inputs, hindering model training and 

overall classification accuracy. Advanced activation 

functions such as LeakyReLU, ELU, GELU, Swish, 

Mish, and PReLU were developed to mitigate these is-

sues by allowing small gradients for negative inputs or 

by introducing smoother, non-monotonic properties, 

which can lead to faster convergence [9], improved gen-

eralization [8], and potentially higher classification re-

sults in tasks like image-based diagnosis of cutaneous 

melanoma.  

The introduction of activation functions into neural 

networks is fundamental for enabling nonlinear expres-

sion capabilities, which in turn enhances accuracy. Dif-

ferent activation functions, including ReLU, 

LeakyReLU, ELU, Swish, Mish, and PReLU, exhibit 

varying performance across diverse neural network ar-

chitectures and datasets, directly influencing the model's 

ability to fit results and improve classification accuracy. 

Wang Hao (2020) demonstrated that selection of an ap-

propriate activation function is critical as it can help bal-

ance accuracy and speed, and even improve model per-

formance without requiring an increase in the dataset size 

[10]. Deep residual learning has likewise proven useful. 

Lequan Yu (2016) utilized fully convolutional residual 

networks and multi-scale contextual cues to achieve 

highly accurate segmentation and classification of skin 

lesions, which are important for distinguishing malignant 

from benign findings [11]. 

To deal with the often limited availability of anno-

tated medical images, researchers have employed strate-

gies like data augmentation and transfer learning. Hosny 

Khalid M. (2019) used AlexNet in conjunction with im-

age augmentation techniques to build a robust lesion clas-

sification model, improving its reliability across diverse 

datasets [12]. Hybrid approaches have also shown poten-

tial. Mahbod Amirreza (2019) extracted deep features 

from pretrained CNNs such as VGG16, ResNet-18, and 

AlexNet, and used them in tandem with support vector 

machines (SVMs) for final classification. This combina-

tion leveraged the strengths of both deep and traditional 

machine learning techniques, achieving high predictive 

accuracy [13].  

Activation functions are vital components in Convo-

lutional Neural Networks (CNNs) for tasks like cutane-

ous melanoma diagnosis, as they introduce non-linearity 

and significantly influence the model's accuracy by de-

termining information flow between layers. This study 

specifically demonstrates that the choice of activation 
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function directly impacts a CNN's performance in classi-

fying skin lesions, with a parameterized Leaky ReLU 

function outperforming other nonlinear activation func-

tions in a proposed CNN model for melanoma recogni-

tion, even with limited datasets. Therefore, selecting the 

appropriate activation function is crucial for effective 

model training and achieving higher prediction accuracy 

in machine learning-based melanoma diagnosis [14]. 

Collectively, these works reflect the expanding 

toolkit available for improving melanoma diagnosis us-

ing CNNs. While architectures like EfficientNet and Res-

Net, along with data augmentation, transfer learning, and 

hybrid models, contribute significantly to model perfor-

mance, the research centres on a critical yet often under-

analysed component - the activation function. 

3. Material and Methods 

This study aims to assess the impact of different activa-

tion functions on the performance of pretrained deep 

learning models for classifying skin lesions from der-

moscopic images. It begins with a description of the da-

taset, followed by an overview of the experimental 

setup. The analysis focuses on pretrained architec-

tures—ResNet152, DenseNet201, and EfficientNet-

B4—with various activation functions (ReLU, 

LeakyReLU, ELU, GELU, Swish, Mish, PReLU) ap-

plied as the final non-linear layer. Details of the training 

pipeline, including preprocessing, augmentation, and 

evaluation metrics, are provided. Finally, the results are 

compared across activation functions to evaluate their 

influence on classification accuracy and convergence. 

3.1. Dataset 

This study utilizes a comprehensive dataset composed of 

17,114 high-quality dermoscopic images, curated to sup-

port research in dermatological image analysis and im-

prove computational diagnostic methods for melanoma 

detection [15]. The dataset is formed by aggregating mul-

tiple subsets from the International Skin Imaging Collab-

oration (ISIC) challenges conducted in 2018, 2019, and 

2020, resulting in a balanced and diverse image reposi-

tory suitable for training and evaluating deep learning 

models [16]. All images were sourced directly from the 

official ISIC platform, with careful selection criteria ap-

plied to reduce the risk of class imbalance presented in 

Figure 1. 

Available in both JPEG and DICOM formats [17], the 

images are accompanied by structured metadata, includ-

ing patient-specific information such as ID, gender, age, 

and lesion location, along with the binary ground truth 

labels indicating whether the lesion is benign or malig-

nant. This structured labelling supports supervised learn-

ing and allows for a consistent evaluation across experi-

mental setups. 

 

 

Figure 1: Representative examples of skin lesions from the merged 

ISIC datasets. 

To investigate the effect of activation functions on 

melanoma classification performance, the dataset was 

split into training, validation, and testing sets. Of the total 

17,114 images, 14,204 were used for training, and the re-

maining 2,910 were equally split between the validation 

and testing phases, as detailed in Table 1. The class dis-

tribution maintained a 70–30 ratio in favour of benign le-

sions, reflecting the prevalence seen in real-world clinical 

datasets. The data partitioning strategy was based on the 

approach of Serra Aksoy, who used a similar 83–17% 

training-to-evaluation split and reported encouraging 

classification outcomes [18]. 

Table 1: Number of the image data from ISIC-Combined dataset 

Class Total Training Testing Validation 

Malignant 5192 4312 441 439 

Benign 11922 9892 1014 1016 

Total 17114 14204 1455 1455 

 

3.2. Data preprocessing 

To support the evaluation of activation functions in deep 

learning models for melanoma classification, a robust 

data preprocessing pipeline was developed to enhance 

model generalization and reduce the risk of overfitting. 

The preprocessing steps were designed to standardize the 

dermoscopic images and introduce realistic variability, 

thereby simulating the diversity of real-world clinical 

scenarios. Specific attention was paid to resizing proce-

dures to match the input requirements of each pretrained 

architecture under investigation. 

The data augmentation pipeline included several 

transformations aimed at increasing the representational 

diversity of the dataset. All images were resized to a fixed 

dimension according to the input size expected by each 

CNN model. To simulate natural variability in skin lesion 

imaging, random horizontal and vertical flips were ap-

plied, along with random rotations to account for shifts 

in camera angle and patient positioning. Color jittering 

techniques were used to alter image brightness and con-

trast, emulating differences in lighting during image cap-

ture. Following augmentation, the images were converted 

to tensors and normalized based on the mean and stand-

ard deviation values of the ImageNet dataset: [0.485, 

0.456, 0.406] for mean and [0.229, 0.224, 0.225] for 

standard deviation [19]. This normalization ensured com-

patibility with the pretrained networks and contributed to 

more stable and efficient training dynamics across exper-

iments involving different activation functions. 
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3.3. Activation Functions 

3.3.1.  Rectified Linear Unit, Leaky ReLU, and Para-

metric ReLU 

These activation functions are foundational in deep learn-

ing, primarily addressing the vanishing gradient problem. 

ReLU is defined as Formulae 1, outputting the input di-

rectly if positive, and zero otherwise. While simple and 

computationally efficient, it can suffer from the "dying 

ReLU" problem, where neurons become inactive for neg-

ative inputs [20].  𝑓(𝑥) = max⁡(0, 𝑥) (1) 

LeakyReLU mitigates this by introducing a small, 

non-zero slope for negative inputs, defined as Formulae 

2 where α is a small constant (e.g., 0.01). This allows gra-

dients to flow even when the input is negative. PReLU 

extends LeakyReLU by making α a learnable parameter, 

allowing the network to adaptively determine the optimal 

slope for negative inputs, potentially improving model 

performance [8]. 𝑓(𝑥) = max⁡(αx, 𝑥) (2) 

3.3.2.  Exponential Linear Unit and Gaussian Error 

Linear Unit 

These activation functions aim to produce more robust 

and stable learning. ELU computes by Formulae 3 and 4. 

It combines the benefits of ReLU (for positive inputs) 

with a small, negative output for negative inputs, which 

can push mean activations closer to zero, leading to faster 

learning by reducing the "bias shift" problem [8]. 𝑓(𝑥) = x⁡for⁡x > 0⁡ (3) 𝑓(𝑥) = α(𝑒𝑥 − 1)⁡for⁡x ≤ 0 (4) 

GELU is a more recent and highly effective activation 

function, particularly in transformer-based models [8]. It 

is defined as Formulae 5, where Φ(x) is the cumulative 

distribution function for the standard Gaussian distribu-

tion. GELU incorporates stochasticity, scaling the input 

by its probability of being greater than zero, which can 

lead to smoother and more accurate gradient estimates. 𝑓(𝑥) = xΦ(x) (5) 

3.3.3. Swish and Mish 

These are self-gated activation functions known for their 

smoothness and strong performance. Swish is defined as 

Formulae 6, where β is often a learnable parameter or set 

to 1. Its smooth, non-monotonic shape allows for better 

information propagation and can help in avoiding dead 

neurons [8]. 𝑓(𝑥) = 𝑥 ⋅ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝑥) (6) 

Mish is another highly effective and smooth activa-

tion function, defined as Formulae 7, where 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = ln⁡(1 + 𝑒𝑥) [8]. Mish's non-monotonic-

ity and smoothness are believed to contribute to its strong 

empirical performance across various tasks, often 

outperforming ReLU and Swish in deeper networks due 

to its ability to retain small negative inputs. 𝑓(𝑥) = 𝑥 ⋅ 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) (7) 

3.4. Evaluation metrics 

To assess the impact of different activation functions on 

the classification of dermoscopic images, each pretrained 

model’s performance was evaluated using a set of stand-

ard metrics: accuracy, precision, recall, and F1-score. 

These metrics were computed based on Formulas 8-11. 

Considering the class imbalance present in the dataset, all 

metrics were calculated using the weighted parameter to 

ensure that underrepresented classes were appropriately 

factored into the overall evaluation. In this context, True 

Positives (TP) and True Negatives (TN) refer to instances 

where the model correctly identified lesions, whereas 

False Positives (FP) and False Negatives (FN) represent 

misclassified cases. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡ 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡ 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (9) 

𝑅𝑒𝑐𝑎𝑙𝑙⁡(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = ⁡ 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (10) 

𝐹1⁡𝑠𝑐𝑜𝑟𝑒 = ⁡ 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (11) 

3.5. Experimental setup 

Every experiment was performed using an identical local 

hardware configuration. Given the limitations imposed 

by the 8GB VRAM available on the NVIDIA GeForce 

RTX 3060 Ti, the study focused on using pretrained mod-

els with moderate memory demands. The model fine-tun-

ing, including the integration and testing of various acti-

vation functions as the final non-linear layer, was entirely 

carried out on a local machine to retain full control over 

training parameters. 

The detailed hardware environment was as follows: 

• Graphics Card: NVIDIA GeForce RTX 3060 Ti, 

equipped with 8GB VRAM, 

• Processor: Intel Core i5-10600K, 4.1 GHz  

• Memory: 16GB DDR4, clocked at 3200 MHz 

This configuration offered sufficient performance for 

evaluating the impact of various activation functions 

without exceeding memory constraints, enabling con-

sistent testing across all models. 

3.6. Hyper-parameter Configuration 

For all evaluated architectures—DenseNet-121, ResNet-

50, and EfficientNet-B0—model fine-tuning was con-

ducted using the AdamW optimizer with a learning rate 

set to 0.0001. The loss function employed was CrossEn-

tropyLoss, adjusted with class weights [1.44, 3.29] to 

mitigate class imbalance. A weight decay of 0.001 was 

applied to prevent overfitting. Due to differing memory 
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requirements, batch size was set to 32 for both DenseNet 

and ResNet models, while for EfficientNet-B0, a reduced 

batch size of 16 was necessary to accommodate GPU 

memory limitations. All other training parameters and 

data preprocessing procedures remained consistent 

across architectures to ensure comparability of results. 

3.7. Research scenario 

1. Environment Setup 

To establish a consistent framework for experimentation, 

the research environment was configured with Python 

version 3.11 and a set of essential libraries tailored for 

deep learning and image processing. Key dependencies 

included PyTorch (2.4.1) for model implementation, 

NumPy (1.23.5) for numerical operations, and Pandas 

(2.2.2) for data management. Visualization of training 

dynamics and evaluation outcomes was supported by 

Matplotlib (3.9.2). The system was explicitly set to lev-

erage GPU acceleration, designating the CUDA-enabled 

device as the default compute backend to enhance train-

ing efficiency, particularly during the evaluation of mul-

tiple activation functions. 

2. Model Fine-Tuning with Activation Functions 

The model adaptation phase began with preprocessing 

steps such as resizing dermoscopic images to architec-

ture-specific dimensions (ranging from 224×224 to 
380×380), normalization, and augmentations to increase 

training set variability. Pretrained models were modified 

only at their final activation layer to incorporate and com-

pare different activation functions: ReLU, LeakyReLU, 

ELU, GELU, Swish, Mish, and PReLU, respectively. 

The models were trained on a curated subset of 14,204 

labeled images from the ISIC dataset, with training gov-

erned by techniques like weight decay to optimize learn-

ing and mitigate overfitting across function variants. 

3. Model Evaluation 

Each trained model configuration was tested using  

a hold-out test set of 1,455 dermoscopic images, none of 

which were seen during training. The objective was to 

determine how each activation function influenced the 

model's ability to correctly classify lesions as either be-

nign or malignant. 

4. Performance Evaluation and Comparative Analysis 

Model performance under each activation function was 

evaluated using standard classification metrics, including 

accuracy, precision, recall (sensitivity), and F1-score. To 

address class imbalance within the dataset, all metrics 

were calculated using weighted averaging, ensuring a fair 

assessment across different lesion types. A comprehen-

sive comparative analysis was then conducted across all 

selected pre-trained architectures: ResNet152, Dense-

Net201, and EfficientNet-B4 to examine the influence of 

activation function choice on diagnostic accuracy. This 

analysis aimed to identify activation functions that con-

sistently enhance predictive performance in the context 

of automated melanoma detection. 

4. Results 

Following the training phase, each model configura-

tion was evaluated to determine its classification 

performance and consistency. Predictions were gener-

ated on the test dataset and compared against the corre-

sponding ground truth labels. The analysis focused on as-

sessing the influence of different activation functions on 

model behavior when integrated into the final layer of 

pretrained architectures.  

To ensure a consistent evaluation protocol, various 

activation functions were integrated into the final layer of 

pretrained CNN models, followed by additional training 

for 5 epochs. This brief fine-tuning was conducted to al-

low the models to adjust to the new nonlinearities and to 

assess whether further training would improve perfor-

mance. The goal was to evaluate how different activation 

functions influence inference performance on dermo-

scopic test data. Each model was trained and evaluated 

once per activation function. 

To enhance the reliability and consistency of the eval-

uation, each model configuration was evaluated over 10 

independent runs, and the resulting performance metrics 

were averaged to mitigate random variation. A thorough 

assessment conducted on the test dataset revealed mean-

ingful insights, with the results for the best-performing 

model–activation function pairs clearly outlined in Table 

2. Among these, EfficientNet-B4 paired with 

LeakyReLU achieved the highest overall results across 

all evaluated metrics, including accuracy (90.5%) and 

F1-score (90.4%). DenseNet201 using the standard 

ReLU function followed closely, also delivering strong 

performance. Interestingly, ResNet152 combined with 

LeakyReLU despite not being the leading model, still 

produced competitive scores across the board. These 

findings underscore the significant influence that activa-

tion functions can have, even at the inference stage, on 

the predictive capabilities of pretrained convolutional 

networks in skin lesion classification tasks. 

Table 2: Performance models with best activation functions 

across 10 test repetitions (mean ± standard deviation) 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

ResNet152 

with Leaky-

ReLU 

89.0 

±0.08 

88.9 

±0.10 

89.0 

±0.11 

89.0 

±0.10 

DenseNet201 

with ReLU 

90.3 

±0.04 

90.2 

±0.06 

90.3 

±0.06 

90.3 

±0.04 

EfficientNet-B4 

with Leaky-

ReLU 

90.5 

±0.15 

90.5 

±0,12 

90.5 

±0.13 
90.4 

±0.15 

These results highlight how different activation func-

tions can influence not just overall performance metrics 

but also specific error types, which is particularly im-

portant in medical diagnostics. 

Although Table 3 shows that the original ResNet152 

model (with its default configuration) slightly outper-

formed the LeakyReLU-modified version in overall ac-

curacy (89.2% vs. 89.0%) and F1-score (89.4% vs. 

89.0%). These results suggest that while default ReLU 

remains a strong baseline, LeakyReLU provides a com-

parable and in some broader comparisons, slightly better 

alternative, particularly when evaluated in isolation 

across diverse activation setups. 
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Table 3: Performance comparison of ResNet152 before and after 

applying the LeakyReLU activation function 

Model Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 

ResNet152 89.2 

±0.014 

89.8 

±0.012 

90.2 

±0.014 

89.4 

±0.013 

ResNet152 

with Leaky-

ReLU 

89.0 

±0.08 
88.9 

±0.10 
89.0 

±0.11 
89.0 

±0.10 

The comparison of activation functions applied to the 

ResNet152 architecture reveals that LeakyReLU delivers 

the most consistent and high-performing results among 

all tested functions. As shown in the bar charts (Figure 2 

and 3), it achieved the highest F1-score (0.890) and ac-

curacy (0.890), slightly outperforming the standard 

ReLU function (F1 = 0.887, Acc = 0.888). Other activa-

tion functions such as GELU and Swish+SiLU demon-

strated moderate results, while PReLU, SELU, and Mish 

performed significantly worse across both metrics. 

 

 

Figure 2: ResNet152 – accuracy by activation function. 

 

 

Figure 3: ResNet152 – F1-score by activation function. 

In conclusion, LeakyReLU emerges as the most ro-

bust activation function for this classification task when 

applied to the pretrained ResNet152 model, maintaining 

high predictive performance while slightly reducing the 

risk of neuron inactivity compared to traditional ReLU. 

When comparing to the baseline performance shown 

in Table 4, the application of the ReLU function clearly 

improves the model's predictive ability. Accuracy in-

creased from 88.3% to 90.3%, and F1-score rose from 

88.5% to 90.3%, indicating a consistent gain in both pre-

cision and recall. 

 

 

Table 4: Performance comparison of DenseNet201 before and af-

ter applying the ReLU activation function 

Model Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 

DenseNet201 88.3 

±0.004 

89.3 

±0.003 

88.2 

±0.006 

88.5 

±0.005 

DenseNet201 

with ReLU 
90.3 

±0.04 
90.2 

±0.06 
90.3 

±0.06 
90.3 

±0.04 

The comparison of activation functions for Dense-

Net201 shows consistently high performance across all 

tested options, with ReLU slightly outperforming others. 

As illustrated in the Figure 4, ReLU achieved the highest 

F1-score (0.903) and accuracy (0.903), closely followed 

by LeakyReLU (F1 = 0.901, Acc = 0.901) and PReLU 

(F1 = 0.898, Acc = 0.899). The differences between the 

functions are minimal, with all metrics staying within  

a narrow performance range, suggesting that Dense-

Net201 is relatively robust to the choice of activation. 

 

 

Figure 4: DenseNet201– accuracy by activation function. 

 

 

Figure 5: DenseNet201– F1-score by activation function. 

These results suggest that while DenseNet201 per-

forms reliably across various nonlinearities, ReLU re-

mains the most effective activation function for this ar-

chitecture in the context of melanoma classification, of-

fering slight yet consistent improvements in key metrics. 

Interestingly, as shown in Table 5, the use of 

LeakyReLU led to a marginal performance shift com-

pared to the default EfficientNet-B4 setup. While the 

baseline model achieved a slightly higher F1-score 

(90.6% vs. 90.4%) and precision, the differences across 

all metrics remain negligible (≤ 0.2%). This indicates that 

the switch to LeakyReLU does not introduce meaningful 

performance degradation, and may even provide slight 

advantages in specific use cases. 
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Table 5: Performance comparison of EfficientNet-B4 before and 

after applying the LeakyReLU activation function 

Model Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 
EfficientNet-B4 90.4 

±0.003 

90.8 

±0.002 

90.4 

±0.002 

90.6 

±0.003 

EfficientNet-B4 

with Leaky-

ReLU 

90.5 

±0.15 
90.5 

±0.12 
90.5 

±0.13 
90.4 

±0.15 

The evaluation of activation functions for Efficient-

Net-B4 highlights LeakyReLU as the top-performing op-

tion, achieving the highest accuracy (0.905) and F1-score 

(0.905) among all tested nonlinearities. ReLU and GELU 

followed closely with nearly identical scores (F1 ≈ 
0.902–0.904), suggesting a high level of stability in this 

architecture regardless of activation function. 

 

Figure 6: EfficientNet-B4 – accuracy by activation function. 

 

Figure 7: EfficientNet-B4 – F1-score by activation function. 

Activation functions such as PReLU and SELU per-

formed significantly worse in this context, with accuracy 

scores falling below 50% (Figure 6-7), reinforcing that 

not all advanced activations are well-suited for every pre-

trained architecture. In conclusion, EfficientNet-B4 

paired with LeakyReLU maintains strong, balanced per-

formance, making it a reliable choice for skin lesion clas-

sification tasks, especially in settings where small perfor-

mance gains are meaningful. 

5. Discussion 

This study investigated the influence of various activa-

tion functions on the classification performance of pre-

trained convolutional neural networks (CNNs) in the 

context of melanoma detection. By substituting the orig-

inal activation functions with alternatives such as 

LeakyReLU, PReLU, GELU, Swish, SELU, and Mish. 

The experiments provided valuable insight into how 

different nonlinear transformations affect model behav-

ior during inference, without the need for additional 

training or fine-tuning.  

The results offer strong empirical support for the ini-

tial hypothesis, demonstrating that activation function se-

lection has a measurable effect on key performance met-

rics, even when applied to fixed, pretrained architectures.  

Marked differences were observed across activation 

functions. In particular, PReLU and SELU consistently 

yielded lower performance across two tested models, un-

derperforming in both accuracy and F1-score when com-

pared to ReLU, LeakyReLU, and GELU. This consistent 

underperformance suggests that certain activation func-

tions may be suboptimal for facilitating feature propaga-

tion or maintaining gradient stability in pretrained net-

works used for this task. 

The findings also reinforce the second hypothesis: the 

optimal activation function varies across CNN architec-

tures. For instance, ResNet152 achieved its highest accu-

racy (89.0%) with LeakyReLU, closely followed by 

ReLU. DenseNet201, on the other hand, performed best 

with ReLU, improving upon its baseline by approxi-

mately 2 percentage points. EfficientNet-B4 is the high-

est-performing model overall, with 90.5% accuracy 

showed optimal results with LeakyReLU, although both 

GELU and ReLU remained highly competitive. The rel-

atively small performance gap among these top activa-

tions for EfficientNet-B4 may point to its robustness and 

adaptability with respect to activation function choice. 

These results underscore the architecture-dependent 

nature of activation function effectiveness. Traditional 

activations such as ReLU continue to demonstrate strong 

performance in medical image classification, while the 

introduction of more complex or less conventional non-

linearities does not necessarily lead to improvements and 

may, in fact, hinder performance in certain settings. 

In line with current literature, this study reaffirms the 

competitiveness of EfficientNet and DenseNet architec-

tures in dermatological diagnostics. However, it adds  

a novel contribution by systematically comparing activa-

tion functions at the inference level, without model re-

training. 

6. Conclusion 

Although medical technologies have advanced signifi-

cantly, there remains a pressing need for automated sys-

tems to assist in disease diagnosis. Modern algorithms 

and models continue to enhance the precision of medical 

data classification [21]. This study investigated the influ-

ence of various activation functions on the performance 

of pretrained convolutional neural networks in the task of 

binary skin lesion classification. The empirical results 

demonstrate that the activation function plays a signifi-

cant role in determining the effectiveness of a model, 

even when the architecture and weights remain un-

changed. 

ReLU and LeakyReLU consistently achieved the 

highest classification metrics across most architectures, 

indicating their robustness and reliability in this medical 

imaging context. In contrast, functions such as PReLU 
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and SELU were associated with noticeably lower perfor-

mance, suggesting limited compatibility with the tested 

CNNs in this specific task. 

Importantly, the optimal activation function was not 

consistent across all models, but instead varied depend-

ing on the architecture. For instance, LeakyReLU yielded 

the best results in ResNet152 and EfficientNet-B4, while 

DenseNet201 performed best with ReLU. This architec-

ture-specific sensitivity underscores the importance of 

aligning nonlinear transformations with model structure 

to maximize performance. 

These findings highlight the need for deliberate and 

context-aware selection of activation functions when de-

ploying pretrained models in sensitive applications such 

as medical diagnostics. Even when architectures are fixed 

and no retraining is performed, internal components like 

activation functions can be optimized to enhance accu-

racy and reliability. Future research may explore adaptive 

or learnable activations, test broader datasets, or assess 

how these functions perform in full end-to-end training 

pipelines. 
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