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Abstract

This paper investigates algorithms that predict the outcome of a duel in a game with RPG elements and determine the
losses incurred. The aim is to evaluate the effectiveness of the following approaches: based on Lanchester's laws and
stochastic, using the Monte Carlo method. Verification was carried out through manual gameplay and comparison of the
obtained results with those predicted by the algorithms, measuring their accuracy with the MAPE. The analysis showed
greater efficiency and stability of the Monte Carlo algorithm, while the Lanchester model turned out to be less reliable in
one of the cases.
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Streszczenie

W niniejszej pracy badane sa algorytmy przewidujace wynik pojedynku w grze z elementami RPG i wyznaczajace po-
niesione straty. Celem jest ocena skutecznosci podej$¢: opartego na prawach Lanchestera oraz stochastycznego, wyko-
rzystujacego metod¢ Monte Carlo. Przeprowadzono weryfikacj¢ poprzez rozgrywki manualne i poréwnanie uzyskanych
wynikow z przewidzianymi przez algorytmy, mierzac ich doktadno$¢ wskaznikiem MAPE. Analiza wykazata wigksza
skuteczno$¢ i stabilno$¢ algorytmu Monte Carlo, podczas gdy model Lanchestera okazat si¢ by¢ mniej wiarygodny w
jednym z przypadkow.
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1. Introduction Each unit can be described by the following charac-

teristics:

e creature (its statistics are described below),

e stack number (also called count) (determining how
many creatures are in a unit; the greater the stack
number, the more damage it can deal at a moment).
Each creature is described by its own statistics. Sta-

tistics include:

e attack (appears in two forms as two separate stats -for
physical and magical sources, it determines the aver-

The subject of the study is a game, one of whose elements
is a duel between two players - each of them commands
between one and ten units. The gameplay takes place in
turns. Based on the initiative statistic of each unit, an ac-
tion order is created for every turn. Based on this list, the
right to make a move is given to one of the players. The
active player chooses one of own units and then decides,
based on unit position on the hexagonal grid, what to do.

Unit can move or attack hostile unit. The range of each
unit is limited to adjacent tiles (Figure 1). age base damage range for each source. The attack

stat value is only indicative for players; thresholds are
TIER used in calculations).

TIER UE e o defense (similar to attack, there are two forms of this
2D 1D statistic - for physical and magical sources. Defense
TIER TIER  gm TIER ‘ o

o= e A refers to the reduction of taken damage - it is ex-
TIER mm  TIER gy 'TIER

pressed as a percentage),

e chance of critical damage (expressed as a percent-

TIER - age),

e range (range for ranged creatures, which, in addition
to melee attacks, can attack from a distance as long as
they are not adjacent to an enemy unit),

e hit points (determine the health of a creature in

Figure 1: Representation of the battlefield in the game - a duel
between the blue and green player.

a unit),
The exception is ranged units - they can attack any o tier (from the weakest level 1 to the strongest level 3,
enemy unit, provided that no enemy unit is located on an it indicates the rarity of the creature - higher levels are
adjacent hexagon. Otherwise, the unit can only perform characterized by higher statistics values. The tier

amelee attack. Ranged attacks avoid counterattacks.
Each unit can only perform one action per turn.
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value itself has no effect on calculations, but it is syn-

onymous with the height of the statistics).

There is a significant randomness factor in the game,
so the results of a duel can vary greatly, even with iden-
tical starting data. Each player initially has their own side
of the board, consisting of thirteen adjacent hexagons
(Figure 1). The player's units are randomly placed on
their side of the board. Unused hexagons remain empty
but are available for movement by both sides. The central
field is neutral and cannot be occupied during the starting
placing.

Each creature has hidden statistics (invisible to play-
ers) that determine physical attack value, magical attack
value, and damage dealt. These statistics define the upper
and lower thresholds of possible damage. For physical
sources, the minimum physical damage F,,;, and maxi-
mum physical damage F,,,, are used. Similarly, for mag-
ical sources, there are the minimum magical damage
M i and maximum magical damage M,

While performing an attack, the ranges for damage
from physical sources (minimum physical damage PF,,;,
and maximum physical damage PF,,,, (formula 1) and
magical sources (the formulas are analogous) are calcu-
lated.

PFpin =L * Fpin *m
(1)

PEpax = L+ Epgx *m

Where L is the stack number and m is the modifier.
The modifier means how the current situation of the unit
affects its strength - a value of 1 occurs when the unit at-
tacks in melee or at full range. In the case of a counterat-
tack, the modifier takes the value 0.7, and in the case of
not full range, the value is 0.5. Using these calculations,
the system obtains the range of possible damage from
a certain source. Analogous formulas are used for magi-
cal sources.

Then, system calculates thresholds for possible dam-
age. The formula is determined for minimum modified
physical damage OF,,;,, taking into account the defense
Dg. of the defending unit (formula 2).

100 - DF
100

In this way, the system obtains thresholds adapted to
the current situation in the game. A similar procedure is
performed for the upper threshold of physical damage
and for the magical source.

After performing these calculations, the system has
the following variables at its disposal: lower threshold for
physical damage OF,,;,, upper threshold for physical
damage OF,,,,, lower threshold for magic damage
OM,,in, upper threshold for magic damage OM,, .
Based on these, the system is able to calculate the mini-
mum damage O,,;, and maximum damage O, ., without
dividing them by source (formula 3).

Omin = OFnin + OMpin

OFmin = PEpin - ( ) 2

(3)
Omax = OFnax + OMipax

These values determine the range of possible damage.
A value is randomly selected and subtracted from the de-
fending unit's hit points pool. A possible critical hit (the
chance of which is determined by the unit's statistics) in-
creases the damage by 25%. After a melee attack, the
units switch places. The duel ends when the number of
all units of one player drops to zero.

The hypothesis of this paper says that one of the de-
veloped algorithms is able to predict the outcome of
a duel between two players.

2. Literature review

Lanchester's laws, which use systems of differential
equations, describe how to calculate the outcome of
a battle between units in armed conflict. These laws refer
to the existence of two units of a specific size and
strength, and how these parameters affect the outcome of
the battle [1].

R. Hoffmann and T. Protasowicki propose a new per-
spective on the application of Lanchester's laws
in the context of contemporary conflicts [1]. The aim of
their work was to build a dynamic combat model based
on Lanchester's equations, to identify and propose a new
perspective on the laws. The goal was to enable many
other researchers to develop this topic. The authors men-
tion and indicate directions that could be subject for fu-
ture research, including the influence of random factors
on the course of battles taking place today. Hoffmann and
Protasowicki analyze the already known Lanchester's
laws, taking into account both the square variant and two
linear variants [1]. These laws are still being analyzed
and modified today in order to achieve desirable and re-
alistic results.

An analysis of these laws in relation to contemporary
armed conflicts was also carried out in [2] by M. Kress.
The author takes into account the types of battles. The
author also reviews current achievements and develop-
ments in Lanchester modeling. The author looks at con-
temporary conflicts around the world. Presented models
take into account irregular actions, considering the im-
portance of the target in given clashes. The author also
discusses situations involving more than two sides to the
conflict.

In [3] N. J. MacKay analyzes and presents the basics
of Lanchester's models, their application with potential.
It is areview of models and themes in the context of
Lanchester's laws.

K. Y. Lin and N. J. MacKay used Lanchester's laws
to analyze the course of combat in situations with diverse
forces [4]. In their work, the authors simulate a battle be-
tween homogeneous units and a side with diverse forces.
The goal is to find and define the most optimal method
of fire distribution. The authors consider a situation in
which a “one-against-many” clash occurs. The authors
aim to analyze tactical dynamics.

In another paper by Kyle Lin, “New results on a sto-
chastic duel game with each force consisting of heteroge-
neous units”, an iterative algorithm is presented that is
capable of determining strategy in optimal way [5]. The
author draws attention to a situation in which one side
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operates with only one unit. The firepower of this unit
should be distributed appropriately to achieve the best re-
sults. The paper describes the topic of dynamic decision-
making regarding the target of an attack in order to max-
imize the chance of defeating a given enemy force before
the allied unit is defeated.

In another paper by N. J. MacKay, three standard
Lanchester models were analyzed, namely aimed-fire,
unaimed-fire and asymmetric, taking into account the
mixed forces of the conflicting sides [6]. Cases of random
distribution in the context of target allocation are dis-
cussed. Further on in the paper, a more general model of
target allocation to units is analyzed, which leads to the
conclusion that an effective approach is to eliminate en-
emy units only after the complete elimination of another
unit - there is a sequence of target units.

In [7], S. G. Coulson extends Lanchester's laws to in-
clude the impact of intelligence on the course of a battle.
The author defines how the superiority in intelligence can
affect the balance of forces between units and how it can
determine the final outcome of a battle. The author points
out that intelligence influences the course of clashes in
today's conflicts, yet this topic has not been sufficiently
developed in terms of its benefits in the context of
Lanchester's laws. The research determines the impact of
intelligence as a force multiplier and the physical force
that intelligence compensates.

M. J. Kearney and R. J. Martin extend Lanchester's
combat model to include stochastic elements to take into
account random modifiers, emphasizing the importance
of randomness [8]. In their paper the authors emphasize
that the standard form of Lanchester's laws is not ideal -
it does not take into account random factors that some-
times have a great impact on the course of events. The
authors analyze this issue in their work.

M. Kosti¢ and A. Jovanovi¢ draw attention to the im-
portance of making optimal decisions in situations of un-
certainty, emphasizing the significant impact of these
variables on the course of events [9]. In their paper the
authors develop a model based on Lanchester's laws for
heterogeneous forces, including air and land forces. The
model allows simplified analysis in the decision-making
process.

O. Batarseh and D. Singham discuss interval-based
simulation as well as uncertainty modeling in [10]. The
authors determine how the IBS approach can be used for
models related to Lanchester's laws to take into account
parameter uncertainty. This approach was compared with
simulation using Monte Carlo principles.

D. P. Kroese and R. Y. Rubinstein, in [11] take a look
at the methods of the Monte Carlo algorithm. They note
that many problems in various fields of science are
solved through sampling. The authors analyze the possi-
bilities of using Monte Carlo methods, identifying three
main scenarios: generating random objects as well as ob-
serving their behavior, estimating numerical quantities,
and solving optimization problems.

M. McCartney, in [12] addresses the issue of rein-
forcements between battles. Battles were modeled using

“aimed fire”. The author used three reinforcement strate-
gies: constant, linearly varying and quadratically varying.
Simulations or the use of artificial intelligence in
games is still being researched. In their work [13], L.
Galka, P. Karczmarek, and D. Czerwinski focus on cre-
ating artificial intelligence algorithms based on neural
networks as well as algorithms based on the Monte Carlo
method. The task of the algorithms is to control the player
in a card game. The authors have proven that there are no
significant differences between these two approaches.

Monte Carlo in the context of games was also used by
G. E. M. Long, D. Perez-Liebana, and S. Samothrakis. In
[14], the authors look at a game in which players have at
their disposal an army consisting of several units of dif-
ferent types, strengths, and costs. The authors propose an
automated method of calculating the cost of a unit using
linear regression. Monte Carlo Tree Search was used to
simulate the players.

In [15], the authors used a simple game to conduct
research using Lanchester's Laws. They demonstrate the
importance of fighting strength in predicting the out-
come. The authors address the topic of calculating the
percentage of losses and the duration of the battle.

Many aspects of predicting the outcome of battles
have been researched and developed. Various authors
have focused on specific factors influencing the course of
battles that took place in reality. However, the use of
Monte Carlo and Lanchester's laws to predict the out-
comes of battles in strategic turn-based games has re-
ceived much less attention. This leaves an unexplored
area concerning the conduct of battles with specific
courses. The use of these approaches requires adaptation
to the specifics of the game. Current scientific achieve-
ments greatly facilitate understanding of this topic.
An important theme is the approach to the sides of the
conflict as heterogeneous forces, which is often used in
the cited works. An equally important issue is the influ-
ence of random factors. It is present in many games.
However, the cited works have their limitations in terms
of the topic addressed in this paper — they mainly concern
real-life clashes. Games, depending on their mechanics,
simulate battles in different ways. They add various pos-
sibilities or impose additional restrictions. The area for
further analysis and research can still be expanded
through the creation of new games with new rules.

3. Algorithms and laws

To predict the outcome of a battle, existing rules and al-
gorithms can be used. They, when adapted to the current
system, could bring the expected results. Two algorithms
based on Lanchester's Laws and Monte Carlo were de-
veloped for the purposes of the study.

3.1. Lanchester’s laws

Lanchester's laws were developed by Frederick William
Lanchester in 1915-1916. They were intended to be used
to calculate the results of the duels. They became an ef-
fective tool, developed and researched over subsequent
decades. Many scientists analyzed these laws for their ac-
curacy with the actual course of historical events. Thay

502



Journal of Computer Sciences Institute

37 (2025) 500-507

also improved and diversified them in order to achieve
better results. The author designed differential equations
for combat situations - ancient and modern battles.

The first form of the equations is known as Lanches-
ter's linear law (also called unaimed fire (formula 4))
[12]. The attrition rate of each side in this model is pro-
portional to the number of its units as well as to number
of the hostile units.

dA _ 4B
dt g
4)
dB _ AB
a ¢

Where a means the size of the first unit, and dA/dt
means the rate at which its size changes. The strength of
the unit is denoted as a. Analogous symbols apply to
group B.

Lanchester's square law (also known as targeted fire
(formula 5)) [12] describes how a unit can attack several
other units at a moment, while also exposing itself to
damage from several sources.

dd_ 0
dt g

(%)
B __
a ¢

Lanchester's laws describe the relationship between
the strength and size of two forces. They describe how
two opposing forces will interact during combat and
which will win. They describe the rate of mutual losses
over time dt. According to Lanchester's Laws, both forces
attack each other at the same time.

3.2. Monte Carlo

Monte Carlo method works different - it is a method used
in situations that are too complex for a purely analytical
approach to deliver the expected results. Compared to
such an analytical approach, the method is enriched in its
structure and operation by random samples - random val-
ues from a given range.

The Monte Carlo principle is to perform multiple cal-
culations for a given process and determine the result
based on a series of trials. The algorithm is characterized
by randomness - it operates on ranges and a random value
generator. This process begins with defining the appro-
priate value space - this is the basis for the subsequent
generation of random samples. The space is a set of all
possible inputs in the studied situation, which is pro-
cessed by the algorithm. Random sampling involves gen-
erating values from the space. The algorithm should then
process the random samples appropriately - each of the
generated values is subject to the same processes. Finally,
the algorithm aggregates the results to obtain an estimate.

3.3. Implementation

For the study purposes, two algorithms were developed,
based on existing laws, rules, and algorithms. The first is
based on Lanchester's Laws. The second one on the

principles of the Monte Carlo algorithm. Both algorithms
were adapted to the needs and rules of the research game
- they had to be modified to reflect as closely as possible
the results obtained by players during manual gameplay.

One of the common stages of both algorithms is the
creation of an initiative list based on the statistics of the
same name for each unit (Figure 2).

void playTurn() {
List<QuickCombat_Lanchester Unit> initiativeList = [];

var heroes = [herol, herol]:
for (int hero = 0; hero < herces.length; hero++){
for (int creature = 0; creature

< heroes[hero] .units.length; creature++){
if (heroes[hero] .units[creature] .count > 0} {
initiativeList.add(heroes[hero].units[creature]);
}
}

}

initiativeList.sort(
{2, b) => b.initiative.compareTo(a.initiative));

Figure 2: The code creating list of units by their initiative.

Units are sorted in descending order according to
their initiative statistics value. In manual gameplay, the
player decides which unit to move. In both algorithms,
the units performing the action are the successive units
from the initiative list. The algorithms select the target in
different ways. The Lanchester's Law algorithm selects
the first enemy unit from the initiative list, while the
Monte Carlo algorithm does it randomly.

For further data processing in the algorithm based on
Lanchester's laws, the required data must first be deter-
mined. In their original form, Lanchester's laws take into
account the size of the unit, the strength of the unit, and
the time step. The size of each unit is known from the
beginning - it is stack number. However, the strength P
of unit is unknown. It can be calculated using the formula
(formula 6).

P =10(Af + Ay) + 4(Ds + D) + 10H, (©6)

The variables used in the formula are the statistics
values of each unit under the players' command. It is im-
portant to take weights into account, as some of the basic
statistics are much more important during gameplay. The
most important statistics are magical attack A,,, and phys-
ical attack A¢. Other statistics taken into account are mag-
ical defense D, physical defense Dy, and hit points H,,.
When determining the strength of a unit, ranged skills in-
crease its combat potential - strength is multiplied by
a value of 1.1. The final strength modifier is an additional
divided by a constant value of 20 to avoid very large final
values. The algorithm assumes a time step of 0.005 in ab-
stract game time units.

The duel between the two selected units is based on
modified rules described as Lanchester's laws. The losses
of unit B (the defending unit) are determined as B,
(formula 7).

™)

Where Apoyer means the strength of unit 4, deter-
mined by formula 6. Ag¢ycxnumper means the number of
creatures in unit. The obtained value of B¢ is sub-
tracted from the current value of the stack number of unit

Bioss = dt- Apower " AstackNumber
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B - if it falls to a negative value, the stack number is set
to 0, which excludes the unit from further processes
(Figure 3).
double lossesB =

dt * attacker.power * (attacker.count );

defender.count -= lossesB;
if (defender.count < 0) {defender.count = 0;}

if (defender.count > 0){
double losseshA =
dt * (defender.power * 0.5) * (defender.count + 1);
attacker.count -= lossesA;
if (attacker.count < 0) {attacker.count = 0;}
}

Figure 3: The code simulating performing of an attack by unit.

The defending unit may launch a counterattack if it is
able to do so. Unit can perform it only after receiving
damage and updating its strength. There is a modifier
with a value of 0.5 - its task is to reduce the dealt damage
(formula 8).

Aposs = dt - Bpower * 0.5- Bstacknumber (3

The above calculations are repeated for subsequent
units from the initiative list. Only the value of strength P
remains unchanged. A; .4 and B ¢ are calculated based
on the units selected from the initiative list. Their current
stack number, which changes after taking damage, is also
taken into account. If neither of the players have been de-
feated, the initiative list is recreated until one of the play-
ers loses their entire army.

The algorithm based on Monte Carlo principles oper-
ates on different rules for calculating losses. This process
takes basic statistics into account as spaces for further
processing. Four hidden unit statistics are used to define
the range of possible damage: minimum physical dam-
age, minimum magical damage, maximum physical dam-
age, and maximum magical damage (Figure 4).

QuickCombat_MC_Unit (this.creature, this.count){

initiative = creature.Initiative;

damage_Min = creature.Attack Magic_Minimum +
creature.Attack Might_ Minimum;

damage_Max = creature.Attack Magic_Maximum +
creature.Attack Might_ Maximum;

currentHealthPoints = creature.HealthPoints * count;

defense = ((creature.Defense Might +

creature.Defense_Magic] / 2).toInt ()

Figure 4: Defining unit data for Monte Carlo algorithm.

The algorithm defines damageMin and damageMax
as the sum of the minimum and maximum damage from
both sources. Unit's defense is the average of its physical
and magical defense, rounded to an integer. Additional
statistic is the current hit points, calculated as the stack
number multiplied by the unit's hit points. (Figure 4).

After selecting the units for combat, the algorithm
calculates the damage dealt. It begins by generating
avalue R from the damage range of the attacking unit
(formula 9).

R € [damageMin, damageMax] )

The obtained R value is multiplied by the stack num-
ber L of the attacking unit - the resulting value is denoted
as Rppmyg-

Romg =R L (10)

Damage dealt (formula 11) must take into account the
defense Bpefense Of the defending unit. Damage dealt
value is reduced by a percentage, based on the target's de-
fense statistics.

BDefense)
100

The damage value obtained is subtracted from the
field describing the current health points of the defending
unit. The stack number of the unit is also modified on an
ongoing basis (Figure 5). As in the previous algorithm, if
at any point during the calculations the unit's hit points
become negative, the stack number will be set to 0, which
excludes the unit from further processes.

)

Dmg = RDmg - (RDmg '

damage dealt = damage dealt -
(damage dealt * (defender.defense / 100)).toInt();

defender.currentHealthPoints =
defender.currentHealthPoints - damage_dealt;

defender.count = (defender.currentHealthPoints /
defender.creature.HealthPoints) .toInt ()5

if (defender.currentHealthPoints < 0){

defender.count = 0;

}

Figure 5: The code updating unit’s data.

The above calculations are repeated for subsequent
units on the initiative list. If no player has been defeated,
the initiative list is being recreated until one player loses
their entire army. The entire combat procedure is per-
formed 21 times. Each time, the results are placed in one
of two lists. These are lists that store the results of win-
ning games for individual player (Figure 6).

bool hero_ 1 Isilive =
combat.checkIfHeroIsAlive (herol) ;
if(hero_1 Isilive){
winningArmy Herol.add(getUnitsCount (herol));
} else {
winningArmy Hero2.add(getUnitsCount (hero2));
}

Figure 6: Placing combat result in the dedicated list.

These lists are built of lists of integers representing
the stack numbers of the winning player's units at the end
of the game. The algorithm considers the player who has
won the most games to be the winner. The final result of
the combat is the stack number of each unit determined
by the median.

4. Research methods

The study includes eight different scenarios that may oc-
cur in the game. Three scenarios describe situations in
which both players operate a full armys, i.e., each of them
has ten units of various types, levels, and stack numbers
at the beginning. Both players have under their command
four tier 1 units, four tier 2 units and two tier 3 units -
creatures have different statistics values but they are bal-
anced through the tier. The difference between these sce-
narios is the advantage of one player (Table 1).

The player strength is the sum of all units” powers P
(formula 6), multiplied by its stack numbers.
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Table 1: Scenarios of full army

No. Playerl  Player2  Description
strength strength
1 39198.1 42380.1 Balanced, tiers 1-3
2 58722.4  42380.1 Advantage, tiers 1-3
3 274386.7 42380.1 Big advantage, tiers 1-3

In the first case, both players command balanced
forces - the total strength of both players is similar, while
in the next two situations examined, the advantage of the
first player increases. There are cases of average and
enormous advantage over the second player.

Several other cases possible in the application were also
considered - these are situations of incomplete armies, in-
cluding extreme cases (Table 2).

Table 2: Scenarios of incomplete armies

No. Playerl  Player2  Description
strength  strength

4 29380 20700 Tier 1 vs tier 3,
1 unit vs 1 unit

5 27926.6 41820 Advantage, tiers 1-3 vs
tier 2, 5 units vs 1 unit

6 27926.6 27940 Balanced, tiers 1-3, 5
units vs 5 units

7 27926.6 42380.1 Advantage, tiers 1-3, 5
units vs 10 units

8 167559.6  42380.1 Big advantage, tiers 1-3,

5 units vs 10 units

For each of the scenarios, manual gameplay was
played repeatedly, and the results were recorded. The
player who was the first to win ten times in a given sce-
nario was considered the most likely winner. Their vic-
tory, as well as the losses during the manual gameplay,
should be predicted by the algorithm. The results of all
ten winning combats were recorded.

For each combat result, the total strength of the army
was calculated, using the same method as before. In this
way, ten probable results of the combat between the play-
ers were obtained.

Both algorithms were run for the same input data. The
algorithm using Lanchester's laws was used only once for
a given scenario. It is an algorithm that will always return
the same result for the same input. The Monte Carlo al-
gorithm was executed ten times - as equivalents for each
of the winning battles played. This delivered ten results
suggested by the algorithm, taking into account the win-
ning player and the state of their army at the end of the
game. For the results obtained from both algorithms, i.e.,
a total of eleven battle results, the total strength of the
winning army at the end of the game was calculated. In
this way, accurate data was obtained for each of the sce-
narios, which is used for further analysis. This data is the
total strength of the winning player's army at the end of
the battle in ten battles, the total strength of the victorious
player's army predicted by the algorithm based on
Lanchester's laws, and ten values of the total strength of

the army predicted by the Monte Carlo algorithm. With
this data, the mean absolute percentage error (MAPE)
can be calculated (formula 12).

n

1
MAPE = —Z
n

xX=1

A

Yx — Vx
Yx

-100% (12)

Where n is the simulation number, y, is the actual re-
sult, and ¥, is the predicted result. Each scenario was
played 10 times manually. The Lanchester algorithm was
run once for each scenario. As a consequence, the results
of each simulation were assumed to have the same value.
The Monte Carlo algorithm was executed 10 times.

Additionally, for each scenario, the time needed to
obtain the result is checked. For every run of the algo-
rithm in a given scenario, the time needed to complete the
task was recorded, and then the results were averaged.

5. Study results

With the presented method, tests were carried out for
each of the scenarios - these are cases of a duel between
the blue and green players. The expected result (the aver-
age value for manual gameplay) was compared with the
average results of both algorithms. Incorrect predictions
of the winner are marked in bold (Table 3).

Table 3: Expected and predicted results for each scenario

No. Expected Predicted by  Predicted by
result Lanchester Monte Carlo

1 10257.5 8141.2 11183.3

2 35194.8 32406.1 38118.6

3 266906 271685.3 271504.5

4 12502.8 27029.6 12854.7

5 25677.5 32828.7 36676.1

6 8820.1 6742.7 4830.6

7 29265.2 18619.7 16184.6

8 165307.3 156435 162078.5

Table 4: MAPE for each scenario

No. Lanchester Monte Carlo
MAPE [%] MAPE [%]

1 23.6 28.5

2 12.2 12.2

3 1.8 1.7

4 317.1 5.7

5 30.3 45.5

6 39.5 42.9

7 36.2 44.5

8 5.3 2.4

For each scenario, the average absolute percentage er-
ror was calculated to define which algorithm was closer
to the expected result in a given scenario. Approximate
values to two decimal places are presented in Table 4.

Each scenario was also analyzed in terms of the time
required to obtain results. Only calculations are examined
(Table 5).
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Table 5: Average execution time of the algorithm for each scenario

No. Lanchester Monte Carlo
[us] [ps]

1 619.8 15079.8

2 260 5960.2

3 160 2539.2

4 59.8 1920.2

5 300.4 7180.2

6 239.8 6580

7 320.2 8619.6

8 320.4 3739.6

6. Analysis of results

The obtained data was analyzed. In eight of the presented
scenarios, the Monte Carlo algorithm was able to cor-
rectly predict the winning player each time. The algo-
rithm based on Lanchester's laws was significantly wrong
in one case, which means that its accuracy in some situa-
tions may remain uncertain (Figure 7).

Number of correct predictions of the winner

8

7

6

Number of hits
N w £ v

fun

o

Lanchester algorithm

Monte Carlo algorithm

Figure 7: Number of correct predictions of the winner.

The MAPE can provide greater insight into the accu-
racy of the results in terms of the losses of the victorious
army (Figure 8).

MAPE for each scenario

B |anchester
W Monte Carlo

Scenario
Figure 8: MAPE for each scenario.

The value of this error in the first three cases is very
similar between algorithms. It can be noted that the
greater the advantage of one army over the other, the
smaller the error in predicting the result by the algo-
rithms. The decline is greater on the Monte Carlo side,
which is better at determining the result when there is
a large advantage. The smaller the advantage, the more
favorable the Lanchester algorithm is. The fourth case,
the most extreme, proved to be problematic for the first

algorithm. The Lanchester algorithm incorrectly deter-
mined the winner of the duel. The final army turned out
to be only slightly weaker than the initial one, which
would be impossible to reach in this combination during
manual gameplay, regardless of the player's skill. The
Monte Carlo algorithm handled this case much better,
with a MAPE value of 5.68%. The next three cases - 5,
6, and 7, although the results are similar to each other,
indicate greater accuracy of the Lanchester algorithm.
The last case, as in the first three, proves that the greater
the advantage of the army, the better Monte Carlo is (Fig-
ure 8).

In this study, the task execution time is a secondary
factor when selecting the appropriate algorithm - the
most important thing is its accuracy with reality. Time
values exceeding a threshold of several seconds would be
an obstacle, but the algorithms presented require so little
time that this aspect can be ignored. However, when com-
paring the data obtained, the algorithm using Lanches-
ter's laws performs its tasks faster (Figure 9).

Average execution time of the algorithm
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Figure 9: Average execution time of the algorithms.

7. Conclusions

The study application is a game that involves a duel be-
tween two players. They both command their own army.
The army consists of up to ten units of varying stack num-
bers and statistics. There is an element of randomness in
the game that has a significant impact on the course of
the game and the final result, so it is difficult to define
a specific algorithm that will be able to accurately predict
the outcome of the game. The difference between the fi-
nal strengths of the armies can be very large, so it is very
difficult to determine a process whose average absolute
percentage error is zero. Two algorithms have been de-
veloped. They are able to calculate the possible outcome
of the game in a short time — one is based on Lanchester's
laws and the other on Monte Carlo. The two algorithms
differ in the processes and calculations they perform. The
results may be more or less similar, depending on the sce-
nario. The Monte Carlo algorithm proved to be more ef-
fective in predicting the winner - it did not make a single
mistake in any of the scenarios. The algorithm inspired
by Lanchester's laws proved to be ineffective in one of
the cases - the most extreme one. The remaining cases
were correctly predicted by both algorithms. Their effec-
tiveness in these cases is quite similar and satisfactory.
The first three cases can be classified as one group in
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which both algorithms behaved stably. Depending on the
advantage of one player over the another, the effective-
ness of both algorithms increases and the MAPE de-
creases. The Monte Carlo algorithm gains significantly
with increasing advantage, as confirmed by the last ex-
ample. With more balanced armies, the Lanchester algo-
rithm achieves a better result (smaller MAPE value), but
these situations are usually very volatile and difficult to
predict. The results of manual gameplay can vary greatly
in cases of forces of similar strength. The hypothesis of
this paper says that one of the developed algorithms is
able to predict the outcome of a duel between two play-
ers. The hypothesis has been confirmed by research and
analysis. These show that, in this situation, the better al-
gorithm is the one based on Monte Carlo principles,
whose calculated results are similar to those obtained
manually. Importantly, in each scenario, the algorithm
correctly predicted the most likely winning player.
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