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Abstract 

This paper investigates algorithms that predict the outcome of a duel in a game with RPG elements and determine the 

losses incurred. The aim is to evaluate the effectiveness of the following approaches: based on Lanchester's laws and 

stochastic, using the Monte Carlo method. Verification was carried out through manual gameplay and comparison of the 

obtained results with those predicted by the algorithms, measuring their accuracy with the MAPE. The analysis showed 

greater efficiency and stability of the Monte Carlo algorithm, while the Lanchester model turned out to be less reliable in 

one of the cases. 
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Streszczenie 

W niniejszej pracy badane są algorytmy przewidujące wynik pojedynku w grze z elementami RPG i wyznaczające po-
niesione straty. Celem jest ocena skuteczności podejść: opartego na prawach Lanchestera oraz stochastycznego, wyko-
rzystującego metodę Monte Carlo. Przeprowadzono weryfikację poprzez rozgrywki manualne i porównanie uzyskanych 
wyników z przewidzianymi przez algorytmy, mierząc ich dokładność wskaźnikiem MAPE. Analiza wykazała większą 
skuteczność i stabilność algorytmu Monte Carlo, podczas gdy model Lanchestera okazał się być mniej wiarygodny w 
jednym z przypadków.  
Słowa kluczowe: algorytmy; Prawa Lanchestera; Monte Carlo; gra z elementami RPG; szybki pojedynek 
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1. Introduction 

The subject of the study is a game, one of whose elements 

is a duel between two players - each of them commands 

between one and ten units. The gameplay takes place in 

turns. Based on the initiative statistic of each unit, an ac-

tion order is created for every turn. Based on this list, the 

right to make a move is given to one of the players. The 

active player chooses one of own units and then decides, 

based on unit position on the hexagonal grid, what to do. 

Unit can move or attack hostile unit. The range of each 

unit is limited to adjacent tiles (Figure 1). 

 

Figure 1: Representation of the battlefield in the game - a duel  

between the blue and green player. 

The exception is ranged units - they can attack any 

enemy unit, provided that no enemy unit is located on an 

adjacent hexagon. Otherwise, the unit can only perform 

a melee attack. Ranged attacks avoid counterattacks. 

Each unit can only perform one action per turn. 

Each unit can be described by the following charac-

teristics: 

• creature (its statistics are described below), 

• stack number (also called count) (determining how 

many creatures are in a unit; the greater the stack 

number, the more damage it can deal at a moment). 

Each creature is described by its own statistics. Sta-

tistics include: 

• attack (appears in two forms as two separate stats -for 

physical and magical sources, it determines the aver-

age base damage range for each source. The attack 

stat value is only indicative for players; thresholds are 

used in calculations). 

• defense (similar to attack, there are two forms of this 

statistic - for physical and magical sources. Defense 

refers to the reduction of taken damage - it is ex-

pressed as a percentage), 

• chance of critical damage (expressed as a percent-

age), 

• range (range for ranged creatures, which, in addition 

to melee attacks, can attack from a distance as long as 

they are not adjacent to an enemy unit), 

• hit points (determine the health of a creature in 

a unit), 

• tier (from the weakest level 1 to the strongest level 3, 

it indicates the rarity of the creature - higher levels are 

characterized by higher statistics values. The tier 
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value itself has no effect on calculations, but it is syn-

onymous with the height of the statistics). 

There is a significant randomness factor in the game, 

so the results of a duel can vary greatly, even with iden-

tical starting data. Each player initially has their own side 

of the board, consisting of thirteen adjacent hexagons 

(Figure 1). The player's units are randomly placed on 

their side of the board. Unused hexagons remain empty 

but are available for movement by both sides. The central 

field is neutral and cannot be occupied during the starting 

placing. 

Each creature has hidden statistics (invisible to play-

ers) that determine physical attack value, magical attack 

value, and damage dealt. These statistics define the upper 

and lower thresholds of possible damage. For physical 

sources, the minimum physical damage 𝐹𝑚𝑖𝑛 and maxi-

mum physical damage 𝐹𝑚𝑎𝑥 are used. Similarly, for mag-

ical sources, there are the minimum magical damage 𝑀𝑚𝑖𝑛 and maximum magical damage 𝑀𝑚𝑎𝑥. 

While performing an attack, the ranges for damage 

from physical sources (minimum physical damage 𝑃𝐹𝑚𝑖𝑛 

and maximum physical damage 𝑃𝐹𝑚𝑎𝑥 (formula 1) and 

magical sources (the formulas are analogous) are calcu-

lated. 𝑃𝐹𝑚𝑖𝑛 =  𝐿 ∙  𝐹𝑚𝑖𝑛  ∙ 𝑚 
 𝑃𝐹𝑚𝑎𝑥 =  𝐿 ∙  𝐹𝑚𝑎𝑥  ∙ 𝑚 

(1) 

Where L is the stack number and m is the modifier. 

The modifier means how the current situation of the unit 

affects its strength - a value of 1 occurs when the unit at-

tacks in melee or at full range. In the case of a counterat-

tack, the modifier takes the value 0.7, and in the case of 

not full range, the value is 0.5. Using these calculations, 

the system obtains the range of possible damage from 

a certain source. Analogous formulas are used for magi-

cal sources. 

Then, system calculates thresholds for possible dam-

age. The formula is determined for minimum modified 

physical damage 𝑂𝐹𝑚𝑖𝑛, taking into account the defense 𝐷𝐹 of the defending unit (formula 2). 𝑂𝐹𝑚𝑖𝑛 = 𝑃𝐹𝑚𝑖𝑛 ∙ (100 − 𝐷𝐹100 ) (2) 

In this way, the system obtains thresholds adapted to 

the current situation in the game. A similar procedure is 

performed for the upper threshold of physical damage 

and for the magical source. 

After performing these calculations, the system has 

the following variables at its disposal: lower threshold for 

physical damage 𝑂𝐹𝑚𝑖𝑛, upper threshold for physical 

damage 𝑂𝐹𝑚𝑎𝑥, lower threshold for magic damage 𝑂𝑀𝑚𝑖𝑛, upper threshold for magic damage 𝑂𝑀𝑚𝑎𝑥. 

Based on these, the system is able to calculate the mini-

mum damage 𝑂𝑚𝑖𝑛 and maximum damage 𝑂𝑚𝑎𝑥, without 

dividing them by source (formula 3). 𝑂𝒎𝒊𝒏 =  𝑂𝐹𝒎𝒊𝒏 + 𝑂𝑀𝒎𝒊𝒏 
 𝑂𝒎𝒂𝒙 = 𝑂𝐹𝒎𝒂𝒙 +  𝑂𝑀𝒎𝒂𝒙 

(3) 

These values determine the range of possible damage. 

A value is randomly selected and subtracted from the de-

fending unit's hit points pool. A possible critical hit (the 

chance of which is determined by the unit's statistics) in-

creases the damage by 25%. After a melee attack, the 

units switch places. The duel ends when the number of 

all units of one player drops to zero. 

The hypothesis of this paper says that one of the de-

veloped algorithms is able to predict the outcome of 

a duel between two players. 

2. Literature review 

Lanchester's laws, which use systems of differential 

equations, describe how to calculate the outcome of 

a battle between units in armed conflict. These laws refer 

to the existence of two units of a specific size and 

strength, and how these parameters affect the outcome of 

the battle [1].  

R. Hoffmann and T. Protasowicki propose a new per-

spective on the application of Lanchester's laws  

in the context of contemporary conflicts [1]. The aim of 

their work was to build a dynamic combat model based 

on Lanchester's equations, to identify and propose a new 

perspective on the laws. The goal was to enable many 

other researchers to develop this topic. The authors men-

tion and indicate directions that could be subject for fu-

ture research, including the influence of random factors 

on the course of battles taking place today. Hoffmann and 

Protasowicki analyze the already known Lanchester's 

laws, taking into account both the square variant and two 

linear variants [1]. These laws are still being analyzed 

and modified today in order to achieve desirable and re-

alistic results. 

An analysis of these laws in relation to contemporary 

armed conflicts was also carried out in [2] by M. Kress. 

The author takes into account the types of battles. The 

author also reviews current achievements and develop-

ments in Lanchester modeling. The author looks at con-

temporary conflicts around the world. Presented models 

take into account irregular actions, considering the im-

portance of the target in given clashes. The author also 

discusses situations involving more than two sides to the 

conflict.  

In [3] N. J. MacKay analyzes and presents the basics 

of Lanchester's models, their application with potential. 

It is a review of models and themes in the context of 

Lanchester's laws. 

K. Y. Lin and N. J. MacKay used Lanchester's laws 

to analyze the course of combat in situations with diverse 

forces [4]. In their work, the authors simulate a battle be-

tween homogeneous units and a side with diverse forces. 

The goal is to find and define the most optimal method 

of fire distribution. The authors consider a situation in 

which a “one-against-many” clash occurs. The authors 
aim to analyze tactical dynamics.  

In another paper by Kyle Lin, “New results on a sto-

chastic duel game with each force consisting of heteroge-

neous units”, an iterative algorithm is presented that is 
capable of determining strategy in optimal way [5]. The 

author draws attention to a situation in which one side 
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operates with only one unit. The firepower of this unit 

should be distributed appropriately to achieve the best re-

sults. The paper describes the topic of dynamic decision-

making regarding the target of an attack in order to max-

imize the chance of defeating a given enemy force before 

the allied unit is defeated. 

In another paper by N. J. MacKay, three standard 

Lanchester models were analyzed, namely aimed-fire, 

unaimed-fire and asymmetric, taking into account the 

mixed forces of the conflicting sides [6]. Cases of random 

distribution in the context of target allocation are dis-

cussed. Further on in the paper, a more general model of 

target allocation to units is analyzed, which leads to the 

conclusion that an effective approach is to eliminate en-

emy units only after the complete elimination of another 

unit - there is a sequence of target units. 

In [7], S. G. Coulson extends Lanchester's laws to in-

clude the impact of intelligence on the course of a battle. 

The author defines how the superiority in intelligence can 

affect the balance of forces between units and how it can 

determine the final outcome of a battle. The author points 

out that intelligence influences the course of clashes in 

today's conflicts, yet this topic has not been sufficiently 

developed in terms of its benefits in the context of 

Lanchester's laws. The research determines the impact of 

intelligence as a force multiplier and the physical force 

that intelligence compensates. 

M. J. Kearney and R. J. Martin extend Lanchester's 

combat model to include stochastic elements to take into 

account random modifiers, emphasizing the importance 

of randomness [8]. In their paper the authors emphasize 

that the standard form of Lanchester's laws is not ideal - 

it does not take into account random factors that some-

times have a great impact on the course of events. The 

authors analyze this issue in their work.  

M. Kostić and A. Jovanović draw attention to the im-
portance of making optimal decisions in situations of un-

certainty, emphasizing the significant impact of these 

variables on the course of events [9]. In their paper the 

authors develop a model based on Lanchester's laws for 

heterogeneous forces, including air and land forces. The 

model allows simplified analysis in the decision-making 

process. 

O. Batarseh and D. Singham discuss interval-based 

simulation as well as uncertainty modeling in [10]. The 

authors determine how the IBS approach can be used for 

models related to Lanchester's laws to take into account 

parameter uncertainty. This approach was compared with 

simulation using Monte Carlo principles.  

D. P. Kroese and R. Y. Rubinstein, in [11] take a look 

at the methods of the Monte Carlo algorithm. They note 

that many problems in various fields of science are 

solved through sampling. The authors analyze the possi-

bilities of using Monte Carlo methods, identifying three 

main scenarios: generating random objects as well as ob-

serving their behavior, estimating numerical quantities, 

and solving optimization problems. 

M. McCartney, in [12] addresses the issue of rein-

forcements between battles. Battles were modeled using 

“aimed fire”. The author used three reinforcement strate-
gies: constant, linearly varying and quadratically varying. 

Simulations or the use of artificial intelligence in 

games is still being researched. In their work [13], Ł. 
Gałka, P. Karczmarek, and D. Czerwiński focus on cre-
ating artificial intelligence algorithms based on neural 

networks as well as algorithms based on the Monte Carlo 

method. The task of the algorithms is to control the player 

in a card game. The authors have proven that there are no 

significant differences between these two approaches. 

Monte Carlo in the context of games was also used by 

G. E. M. Long, D. Perez-Liebana, and S. Samothrakis. In 

[14], the authors look at a game in which players have at 

their disposal an army consisting of several units of dif-

ferent types, strengths, and costs. The authors propose an 

automated method of calculating the cost of a unit using 

linear regression. Monte Carlo Tree Search was used to 

simulate the players. 

In [15], the authors used a simple game to conduct 

research using Lanchester's Laws. They demonstrate the 

importance of fighting strength in predicting the out-

come. The authors address the topic of calculating the 

percentage of losses and the duration of the battle. 

Many aspects of predicting the outcome of battles 

have been researched and developed. Various authors 

have focused on specific factors influencing the course of 

battles that took place in reality. However, the use of 

Monte Carlo and Lanchester's laws to predict the out-

comes of battles in strategic turn-based games has re-

ceived much less attention. This leaves an unexplored 

area concerning the conduct of battles with specific 

courses. The use of these approaches requires adaptation 

to the specifics of the game. Current scientific achieve-

ments greatly facilitate understanding of this topic.  

An important theme is the approach to the sides of the 

conflict as heterogeneous forces, which is often used in 

the cited works. An equally important issue is the influ-

ence of random factors. It is present in many games. 

However, the cited works have their limitations in terms 

of the topic addressed in this paper – they mainly concern 

real-life clashes. Games, depending on their mechanics, 

simulate battles in different ways. They add various pos-

sibilities or impose additional restrictions. The area for 

further analysis and research can still be expanded 

through the creation of new games with new rules. 

3. Algorithms and laws 

To predict the outcome of a battle, existing rules and al-

gorithms can be used. They, when adapted to the current 

system, could bring the expected results. Two algorithms 

based on Lanchester's Laws and Monte Carlo were de-

veloped for the purposes of the study. 

3.1. Lanchester’s laws 

Lanchester's laws were developed by Frederick William 

Lanchester in 1915-1916. They were intended to be used 

to calculate the results of the duels. They became an ef-

fective tool, developed and researched over subsequent 

decades. Many scientists analyzed these laws for their ac-

curacy with the actual course of historical events. Thay 
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also improved and diversified them in order to achieve 

better results. The author designed differential equations 

for combat situations - ancient and modern battles. 

The first form of the equations is known as Lanches-

ter's linear law (also called unaimed fire (formula 4)) 

[12]. The attrition rate of each side in this model is pro-

portional to the number of its units as well as to number 

of the hostile units. 𝑑𝐴𝑑𝑡 =  − 𝛽𝐴𝐵 

 𝑑𝐵𝑑𝑡 =  − 𝛼𝐴𝐵 

(4) 

Where a means the size of the first unit, and dA/dt 

means the rate at which its size changes. The strength of 

the unit is denoted as α. Analogous symbols apply to 
group B. 

Lanchester's square law (also known as targeted fire 

(formula 5)) [12] describes how a unit can attack several 

other units at a moment, while also exposing itself to 

damage from several sources. 𝑑𝐴𝑑𝑡 =  − 𝛽𝐵 

 𝑑𝐵𝑑𝑡 =  − 𝛼𝐴 

(5) 

Lanchester's laws describe the relationship between 

the strength and size of two forces. They describe how 

two opposing forces will interact during combat and 

which will win. They describe the rate of mutual losses 

over time dt. According to Lanchester's Laws, both forces 

attack each other at the same time. 

3.2. Monte Carlo 

Monte Carlo method works different - it is a method used 

in situations that are too complex for a purely analytical 

approach to deliver the expected results. Compared to 

such an analytical approach, the method is enriched in its 

structure and operation by random samples - random val-

ues from a given range. 

The Monte Carlo principle is to perform multiple cal-

culations for a given process and determine the result 

based on a series of trials. The algorithm is characterized 

by randomness - it operates on ranges and a random value 

generator. This process begins with defining the appro-

priate value space - this is the basis for the subsequent 

generation of random samples. The space is a set of all 

possible inputs in the studied situation, which is pro-

cessed by the algorithm. Random sampling involves gen-

erating values from the space. The algorithm should then 

process the random samples appropriately - each of the 

generated values is subject to the same processes. Finally, 

the algorithm aggregates the results to obtain an estimate. 

3.3. Implementation 

For the study purposes, two algorithms were developed, 

based on existing laws, rules, and algorithms. The first is 

based on Lanchester's Laws. The second one on the 

principles of the Monte Carlo algorithm. Both algorithms 

were adapted to the needs and rules of the research game 

- they had to be modified to reflect as closely as possible 

the results obtained by players during manual gameplay.  

One of the common stages of both algorithms is the 

creation of an initiative list based on the statistics of the 

same name for each unit (Figure 2). 

 

Figure 2: The code creating list of units by their initiative. 

Units are sorted in descending order according to 

their initiative statistics value. In manual gameplay, the 

player decides which unit to move. In both algorithms, 

the units performing the action are the successive units 

from the initiative list. The algorithms select the target in 

different ways. The Lanchester's Law algorithm selects 

the first enemy unit from the initiative list, while the 

Monte Carlo algorithm does it randomly.  

For further data processing in the algorithm based on 

Lanchester's laws, the required data must first be deter-

mined. In their original form, Lanchester's laws take into 

account the size of the unit, the strength of the unit, and 

the time step. The size of each unit is known from the 

beginning - it is stack number. However, the strength P 

of unit is unknown. It can be calculated using the formula 

(formula 6). 𝑃 = 10(𝐴𝑓 + 𝐴𝑚) + 4(𝐷𝑓 + 𝐷𝑚) + 10𝐻𝑝 (6) 

The variables used in the formula are the statistics 

values of each unit under the players' command. It is im-

portant to take weights into account, as some of the basic 

statistics are much more important during gameplay. The 

most important statistics are magical attack 𝐴𝑚 and phys-

ical attack 𝐴𝑓. Other statistics taken into account are mag-

ical defense 𝐷𝑚, physical defense 𝐷𝑓, and hit points 𝐻𝑝. 

When determining the strength of a unit, ranged skills in-

crease its combat potential - strength is multiplied by 

a value of 1.1. The final strength modifier is an additional 

divided by a constant value of 20 to avoid very large final 

values. The algorithm assumes a time step of 0.005 in ab-

stract game time units.  

The duel between the two selected units is based on 

modified rules described as Lanchester's laws. The losses 

of unit B (the defending unit) are determined as 𝐵𝐿𝑜𝑠𝑠 

(formula 7). 𝐵𝐿𝑜𝑠𝑠 = 𝑑𝑡 ∙ 𝐴𝑃𝑜𝑤𝑒𝑟 ∙ 𝐴𝑆𝑡𝑎𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟 (7) 

Where 𝐴𝑃𝑜𝑤𝑒𝑟 means the strength of unit A, deter-

mined by formula 6. 𝐴𝑆𝑡𝑎𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟 means the number of 

creatures in unit. The obtained value of 𝐵𝐿𝑜𝑠𝑠 is sub-

tracted from the current value of the stack number of unit 
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B - if it falls to a negative value, the stack number is set 

to 0, which excludes the unit from further processes  

(Figure 3). 

 

Figure 3: The code simulating performing of an attack by unit. 

The defending unit may launch a counterattack if it is 

able to do so. Unit can perform it only after receiving 

damage and updating its strength. There is a modifier 

with a value of 0.5 - its task is to reduce the dealt damage 

(formula 8). 𝐴𝐿𝑜𝑠𝑠 = 𝑑𝑡 ∙ 𝐵𝑃𝑜𝑤𝑒𝑟 ∙ 0.5 ∙ 𝐵𝑆𝑡𝑎𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟 (8) 

The above calculations are repeated for subsequent 

units from the initiative list. Only the value of strength P 

remains unchanged. 𝐴𝐿𝑜𝑠𝑠 and 𝐵𝐿𝑜𝑠𝑠 are calculated based 

on the units selected from the initiative list. Their current 

stack number, which changes after taking damage, is also 

taken into account. If neither of the players have been de-

feated, the initiative list is recreated until one of the play-

ers loses their entire army.  

The algorithm based on Monte Carlo principles oper-

ates on different rules for calculating losses. This process 

takes basic statistics into account as spaces for further 

processing. Four hidden unit statistics are used to define 

the range of possible damage: minimum physical dam-

age, minimum magical damage, maximum physical dam-

age, and maximum magical damage (Figure 4). 

 

 

Figure 4: Defining unit data for Monte Carlo algorithm. 

The algorithm defines damageMin and damageMax 

as the sum of the minimum and maximum damage from 

both sources. Unit's defense is the average of its physical 

and magical defense, rounded to an integer. Additional 

statistic is the current hit points, calculated as the stack 

number multiplied by the unit's hit points. (Figure 4). 

After selecting the units for combat, the algorithm 

calculates the damage dealt. It begins by generating 

a value R from the damage range of the attacking unit 

(formula 9). 𝑅 ∈ [𝑑𝑎𝑚𝑎𝑔𝑒𝑀𝑖𝑛, 𝑑𝑎𝑚𝑎𝑔𝑒𝑀𝑎𝑥] (9) 

The obtained R value is multiplied by the stack num-

ber L of the attacking unit - the resulting value is denoted 

as 𝑅𝐷𝑚𝑔. 

𝑅𝐷𝑚𝑔 = 𝑅 ∙ 𝐿 (10) 

Damage dealt (formula 11) must take into account the 

defense 𝐵𝐷𝑒𝑓𝑒𝑛𝑠𝑒 of the defending unit. Damage dealt 

value is reduced by a percentage, based on the target's de-

fense statistics. 𝐷𝑚𝑔 = 𝑅𝐷𝑚𝑔 − (𝑅𝐷𝑚𝑔 ∙ 𝐵𝐷𝑒𝑓𝑒𝑛𝑠𝑒100 ) (11) 

The damage value obtained is subtracted from the 

field describing the current health points of the defending 

unit. The stack number of the unit is also modified on an 

ongoing basis (Figure 5). As in the previous algorithm, if 

at any point during the calculations the unit's hit points 

become negative, the stack number will be set to 0, which 

excludes the unit from further processes. 

 

 

Figure 5: The code updating unit’s data. 

The above calculations are repeated for subsequent 

units on the initiative list. If no player has been defeated, 

the initiative list is being recreated until one player loses 

their entire army. The entire combat procedure is per-

formed 21 times. Each time, the results are placed in one 

of two lists. These are lists that store the results of win-

ning games for individual player (Figure 6).  
 

 

Figure 6: Placing combat result in the dedicated list. 

These lists are built of lists of integers representing 

the stack numbers of the winning player's units at the end 

of the game. The algorithm considers the player who has 

won the most games to be the winner. The final result of 

the combat is the stack number of each unit determined 

by the median. 

4. Research methods 

The study includes eight different scenarios that may oc-

cur in the game. Three scenarios describe situations in 

which both players operate a full army, i.e., each of them 

has ten units of various types, levels, and stack numbers 

at the beginning. Both players have under their command 

four tier 1 units, four tier 2 units and two tier 3 units - 

creatures have different statistics values but they are bal-

anced through the tier. The difference between these sce-

narios is the advantage of one player (Table 1).  

The player strength is the sum of all units’ powers P 

(formula 6), multiplied by its stack numbers. 
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Table 1: Scenarios of full army 

No. Player 1 

strength 

Player 2 

strength 

Description 

1 39198.1 42380.1 Balanced, tiers 1-3 

2 58722.4 42380.1 Advantage, tiers 1-3 

3 274386.7 42380.1 Big advantage, tiers 1-3 

 

In the first case, both players command balanced 

forces - the total strength of both players is similar, while 

in the next two situations examined, the advantage of the 

first player increases. There are cases of average and 

enormous advantage over the second player. 

Several other cases possible in the application were also 

considered - these are situations of incomplete armies, in-

cluding extreme cases (Table 2). 

 

Table 2: Scenarios of incomplete armies 

No. Player 1 

strength 

Player 2 

strength 

Description 

4 29380 20700 Tier 1 vs tier 3,  

1 unit vs 1 unit 

5 27926.6 41820 Advantage, tiers 1-3 vs 

tier 2, 5 units vs 1 unit 

6 27926.6 27940 Balanced, tiers 1-3, 5 

units vs 5 units 

7 27926.6 42380.1 Advantage, tiers 1-3, 5 

units vs 10 units 

8 167559.6 42380.1 Big advantage, tiers 1-3, 

5 units vs 10 units 

 

For each of the scenarios, manual gameplay was 

played repeatedly, and the results were recorded. The 

player who was the first to win ten times in a given sce-

nario was considered the most likely winner. Their vic-

tory, as well as the losses during the manual gameplay, 

should be predicted by the algorithm. The results of all 

ten winning combats were recorded.  

For each combat result, the total strength of the army 

was calculated, using the same method as before. In this 

way, ten probable results of the combat between the play-

ers were obtained. 

Both algorithms were run for the same input data. The 

algorithm using Lanchester's laws was used only once for 

a given scenario. It is an algorithm that will always return 

the same result for the same input. The Monte Carlo al-

gorithm was executed ten times - as equivalents for each 

of the winning battles played. This delivered ten results 

suggested by the algorithm, taking into account the win-

ning player and the state of their army at the end of the 

game. For the results obtained from both algorithms, i.e., 

a total of eleven battle results, the total strength of the 

winning army at the end of the game was calculated. In 

this way, accurate data was obtained for each of the sce-

narios, which is used for further analysis. This data is the 

total strength of the winning player's army at the end of 

the battle in ten battles, the total strength of the victorious 

player's army predicted by the algorithm based on 

Lanchester's laws, and ten values of the total strength of 

the army predicted by the Monte Carlo algorithm. With 

this data, the mean absolute percentage error (MAPE) 

can be calculated (formula 12). 

MAPE = 1n ∑ |yx − ŷxyx |n
x=1  ∙ 100% (12) 

Where n is the simulation number, 𝑦𝑥 is the actual re-

sult, and 𝑦𝑥 is the predicted result. Each scenario was 

played 10 times manually. The Lanchester algorithm was 

run once for each scenario. As a consequence, the results 

of each simulation were assumed to have the same value. 

The Monte Carlo algorithm was executed 10 times. 

Additionally, for each scenario, the time needed to 

obtain the result is checked. For every run of the algo-

rithm in a given scenario, the time needed to complete the 

task was recorded, and then the results were averaged. 
 

5. Study results 

With the presented method, tests were carried out for 

each of the scenarios - these are cases of a duel between 

the blue and green players. The expected result (the aver-

age value for manual gameplay) was compared with the 

average results of both algorithms. Incorrect predictions 

of the winner are marked in bold (Table 3).  

 

Table 3: Expected and predicted results for each scenario 

No. Expected 

result 

Predicted by 

Lanchester 

Predicted by 

Monte Carlo 

1 10257.5 8141.2 11183.3 

2 35194.8 32406.1 38118.6 

3 266906 271685.3 271504.5 

4 12502.8 27029.6 12854.7 

5 25677.5 32828.7 36676.1 

6 8820.1 6742.7 4830.6 

7 29265.2 18619.7 16184.6 

8 165307.3 156435 162078.5 

 

Table 4: MAPE for each scenario 

No. Lanchester 

MAPE [%] 

Monte Carlo 

MAPE [%] 

1 23.6 28.5 

2 12.2 12.2 

3 1.8 1.7 

4 317.1 5.7 

5 30.3 45.5 

6 39.5 42.9 

7 36.2 44.5 

8 5.3 2.4 

 

For each scenario, the average absolute percentage er-

ror was calculated to define which algorithm was closer 

to the expected result in a given scenario. Approximate 

values to two decimal places are presented in Table 4. 

Each scenario was also analyzed in terms of the time 

required to obtain results. Only calculations are examined 

(Table 5). 
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Table 5: Average execution time of the algorithm for each scenario 

No. Lanchester 

[µs] 

Monte Carlo 

[µs] 

1 619.8 15079.8 

2 260 5960.2 

3 160 2539.2 

4 59.8 1920.2 

5 300.4 7180.2 

6 239.8 6580 

7 320.2 8619.6 

8 320.4 3739.6 
 

6. Analysis of results 

The obtained data was analyzed. In eight of the presented 

scenarios, the Monte Carlo algorithm was able to cor-

rectly predict the winning player each time. The algo-

rithm based on Lanchester's laws was significantly wrong 

in one case, which means that its accuracy in some situa-

tions may remain uncertain (Figure 7).  

 

Figure 7: Number of correct predictions of the winner. 

The MAPE can provide greater insight into the accu-

racy of the results in terms of the losses of the victorious 

army (Figure 8).  

 

Figure 8: MAPE for each scenario. 

The value of this error in the first three cases is very 

similar between algorithms. It can be noted that the 

greater the advantage of one army over the other, the 

smaller the error in predicting the result by the algo-

rithms. The decline is greater on the Monte Carlo side, 

which is better at determining the result when there is 

a large advantage. The smaller the advantage, the more 

favorable the Lanchester algorithm is. The fourth case, 

the most extreme, proved to be problematic for the first 

algorithm. The Lanchester algorithm incorrectly deter-

mined the winner of the duel. The final army turned out 

to be only slightly weaker than the initial one, which 

would be impossible to reach in this combination during 

manual gameplay, regardless of the player's skill. The 

Monte Carlo algorithm handled this case much better, 

with a MAPE value of 5.68%. The next three cases - 5, 

6, and 7, although the results are similar to each other, 

indicate greater accuracy of the Lanchester algorithm. 

The last case, as in the first three, proves that the greater 

the advantage of the army, the better Monte Carlo is (Fig-

ure 8). 

In this study, the task execution time is a secondary 

factor when selecting the appropriate algorithm - the 

most important thing is its accuracy with reality. Time 

values exceeding a threshold of several seconds would be 

an obstacle, but the algorithms presented require so little 

time that this aspect can be ignored. However, when com-

paring the data obtained, the algorithm using Lanches-

ter's laws performs its tasks faster (Figure 9). 

 

 

Figure 9: Average execution time of the algorithms. 
 

7. Conclusions 

The study application is a game that involves a duel be-

tween two players. They both command their own army. 

The army consists of up to ten units of varying stack num-

bers and statistics. There is an element of randomness in 

the game that has a significant impact on the course of 

the game and the final result, so it is difficult to define 

a specific algorithm that will be able to accurately predict 

the outcome of the game. The difference between the fi-

nal strengths of the armies can be very large, so it is very 

difficult to determine a process whose average absolute 

percentage error is zero. Two algorithms have been de-

veloped. They are able to calculate the possible outcome 

of the game in a short time – one is based on Lanchester's 

laws and the other on Monte Carlo. The two algorithms 

differ in the processes and calculations they perform. The 

results may be more or less similar, depending on the sce-

nario. The Monte Carlo algorithm proved to be more ef-

fective in predicting the winner - it did not make a single 

mistake in any of the scenarios. The algorithm inspired 

by Lanchester's laws proved to be ineffective in one of 

the cases - the most extreme one. The remaining cases 

were correctly predicted by both algorithms. Their effec-

tiveness in these cases is quite similar and satisfactory. 

The first three cases can be classified as one group in 
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which both algorithms behaved stably. Depending on the 

advantage of one player over the another, the effective-

ness of both algorithms increases and the MAPE de-

creases. The Monte Carlo algorithm gains significantly 

with increasing advantage, as confirmed by the last ex-

ample. With more balanced armies, the Lanchester algo-

rithm achieves a better result (smaller MAPE value), but 

these situations are usually very volatile and difficult to 

predict. The results of manual gameplay can vary greatly 

in cases of forces of similar strength. The hypothesis of 

this paper says that one of the developed algorithms is 

able to predict the outcome of a duel between two play-

ers. The hypothesis has been confirmed by research and 

analysis. These show that, in this situation, the better al-

gorithm is the one based on Monte Carlo principles, 

whose calculated results are similar to those obtained 

manually. Importantly, in each scenario, the algorithm 

correctly predicted the most likely winning player. 
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