JCSI 37 (2025) 508-514
JOU N AL Received: 14 September 2025

COMPUTER SCIENCES INSTITUTE Accepted: 18 October 2025

Analysis of the efficiency of Apex and Java languages and related technol-
ogies in performing database operations
Marcin Janczarek*, Konrad Lewicki, Jakub Smotka

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The article presents the results of research on the impact of programming language and database system on application
performance. The aim was to indicate which technologies perform better under different workloads. Java with Post-
greSQL/MySQL was compared to the cloud-based Salesforce solution using Apex. Java handles sequential operations
more efficiently, while Apex provides greater stability and scalability. The optimal choice depends on the application’s
characteristics and environment.

Keywords: Apex; Java; database efficiency; cloud system

*Corresponding author
Email address: $95419@pollub.edu.pl (M. Janczarek)

Published under Creative Common License (CC BY 4.0 Int.)

1. Introduction The aim of this study was to analyse how the choice
of database system and programming language affects
application performance when carrying out different re-
search scenarios. This analysis made it possible to deter-
mine what differences occur in the efficiency of handling
database queries depending on the technology used and
how database systems in the cloud influence the speed
and stability of applications.

Database applications play a key role in handling data in
today’s world, which is increasingly dominated by cloud
technologies. As the volume of processed data grows and
user requirements become more complex, the perfor-
mance of these applications becomes one of the main fac-
tors that determine their success. The proper choice of
technologies, including the programming language,
tools, and methods, is crucial for the efficiency of data- 2. Literature review
base systems.

Java has long been one of the most popular program-
ming languages [1] for database applications. A wide
range of tools and libraries, such as Hibernate and Spring
Data JPA, makes it easy to build and optimize applica-
tions that can efficiently handle vast amounts of data. The
language is used both in web applications and in more
complex business systems, which makes it a versatile and
universal choice.

On the other hand, the Apex language [2] is an inte-
gral part of the Salesforce ecosystem and was created
with the platform’s specific needs in mind. It is tightly
integrated with Salesforce tools, which allows direct in-
teraction with data and business logic stored in the cloud.
Although Salesforce [3] is an environment optimized for
handling large data sets and business operations, the way
Apex deals with database operations differs from the ap-
proach used in Java. The importance of database perfor-
mance does not end with the speed of query execution. A
key aspect is also the intuitiveness of the tools and their
ability to maintain stability and scalability under heavy
load. For both developers and end users, it is important
to find a balance between ease of implementation, code
clarity, and system speed.

By understanding the differences in efficiency be-
tween technologies based on Java and Apex, one can bet-
ter tailor the choice of tools to the needs of specific pro-
jects. An optimal combination of technologies can not
only increase the performance of the system but also sig-
nificantly affect the quality of services delivered to end
users.

Despite numerous studies on the performance of database
queries in various programming languages, few available
publications focus directly on the Salesforce Apex lan-
guage. As a rule, articles present the performance or
functionalities of this environment in the context of the
Salesforce platform rather than comparing it with other
languages. Comparisons of the performance of technolo-
gies based on Apex and Java under similar conditions are
practically absent, which makes it difficult to assess the
potential advantages and limitations of both languages in
database applications. The lack of such research creates
room for an analysis that would make it possible to better
understand the differences and similarities between Apex
and Java in the context of query processing and opera-
tional efficiency in environments with different levels of
load. This chapter aims to highlight this research gap and
to emphasize the need for in-depth comparative analyses
in this field.

In the article "Analysis of the performance of appli-
cation development methods in Salesforce technology"
[4] the authors present the results of a comparative anal-
ysis of methods for creating applications in Salesforce
technology. They juxtapose the object oriented language
Apex, the Visualforce framework, and building applica-
tions using the point and click method. Performance tests
were carried out, examining key technical parameters
such as page load time and the amount of data processed.
The author concluded that the methods offer comparable
capabilities in terms of functionality and overall perfor-
mance. Increasing the number of records did not reduce

508

mailto:s95419@pollub.edu.pl

Journal of Computer Sciences Institute

37 (2025) 508-514

performance, which shows the effectiveness of
Salesforce in handling large data sets.

The article "Data Processing in Cloud Computing
Model on the Example of Salesforce Cloud" [5] presents
a comparison of data processing methods in cloud com-
puting using the Salesforce platform as an example. The
research covers the effectiveness of five data processing
methods in different scenarios. The results show how dif-
ferent approaches can be used to optimize the processing
of large volumes of data and provide conclusions about
their application in business practice.

When creating applications with Salesforce, automa-
tion also plays an important role, as shown in the article
"A real time service system in the cloud" [6], which de-
scribes building a system supporting snooker tourna-
ments based on Salesforce. The system enables the auto-
mation of organizational processes while improving effi-
ciency and reducing the operational costs of the organi-
zation.

The authors in "Performance Analysis and Improve-
ment for CRUD Operations in Relational Databases from
Java Programs Using JPA, Hibernate, Spring Data JPA"
[7] article analyse the impact of different combinations
of ORM frameworks and RDBMS on the performance of
CRUD operations in Java applications. Tests were con-
ducted on a large number of records, using a warm JVM
start to identify optimal solutions for different types of
operations. The results provide recommendations for de-
velopers regarding the choice of frameworks and data-
base engines for applications that require high perfor-
mance.

In the review article titled "Database management
system performance comparisons: A systematic literature
review" [8] the author systematically surveys studies that
compare the performance of database management sys-
tems, including RDBMS, NoSQL, and NewSQL. The au-
thor discusses typical problems with performance testing,
the lack of standardized methods, and challenges related
to interpreting results in different business contexts. The
study provides recommendations for academia and in-
dustry regarding testing and choosing a DBMS.

In the article "Efficiency of standard software archi-
tectures for Java based access to remote databases" [9]
the authors analyse the performance of various standard
architectures used for accessing databases from applica-
tions written in Java.

The work focuses on comparing several approaches,
such as direct use of JDBC, the use of ORM frameworks,
and layered approaches such as DAO. The research was
conducted using real use cases, taking into account pa-
rameters such as query execution time, time overhead re-
lated to data processing, and the impact of the chosen ap-
proach on code complexity and the ability to scale the
application.

The results showed that although direct access
through JDBC has the shortest operation execution time,
layered approaches provide better code readability, easier
management, and greater flexibility, especially in larger
projects. The authors recommend choosing the architec-
ture depending on the scale and complexity of the project,
emphasizing the importance of the trade-off between per-
formance and ease of maintenance.

The article "Spring Framework Reliability Investiga-
tion Against Database Bridging Layer Using Java Plat-
form" [10] presents the results of research on the reliabil-
ity and efficiency of applications built on Spring Frame-
work in the context of the layer that mediates between the
application and the database. The authors conducted a se-
ries of tests of web applications, analysing both system
response time under different loads and the stability of
communication with the database in conditions that sim-
ulate failures and delays. The research showed that the
use of Spring components, such as Spring Data JPA and
Spring Transaction Management, has a positive effect on
application resilience to errors and simplifies exception
handling. At the same time it was noted that properly con-
figuring connection management mechanisms and asyn-
chronous query processing can significantly improve
system responsiveness under heavy load.

In the article "Evaluating Database and Indexing Per-
formance on the Salesforce Platform" [11] the author
evaluates the impact of indexing mechanisms on the per-
formance of database operations carried out in the
Salesforce environment. The research was conducted us-
ing the Apex language and the Force.com platform, com-
paring different field types and index configurations in
the context of the speed of SOQL queries. The experi-
ment analysed response times for SELECT queries and
complex conditional queries with a growing number of
records. The results showed that the lack of appropriate
indexes significantly reduces performance even with
moderate data sets. In turn, the use of custom indexes
made it possible to shorten response time several times.
The author highlights the importance of planning data
structure and indexing in Salesforce based projects, espe-
cially in systems that intensively process data.

3. Scientific method

As part of the study, two applications were developed to
perform CRUD operations via a REST API. The first was
implemented in Java using Spring Boot and Spring Data
JPA, and the second in Apex within the Salesforce envi-
ronment. Both applications implemented analogous busi-
ness logic, which allowed a direct comparison of their
performance. Both databases were created according to
the schema shown in Figure 1. Due to the limitations of
the basic Salesforce license, the dataset had to be limited
to 5 MB, which corresponded to about two thousand rec-
ords.

509

Journal of Computer Sciences Institute

37 (2025) 508-514

order

u o brand

|2 id_brand : int(11)
|

5 name : varchar(255)

v
¢ 4 brand_id_brand : int(11)
'@ id_model : int(11)
9 name : varchar(255)
v
engine_power : int(11)
@ id_vehicle : int(11)
load_capacity : int(11)

fo
client_id_client : int(11)
discount : int(11)
discount_price : decimal(38,2)
@ id_order : int(11)
total_price : decimal(38,2)

model

5 name : varchar(255)

v S
2 id_client : int(11)
5 city : varchar(255)

vehicle client

= email : varchar(255)
‘ # manufacture_year : int(11) g first_name : varchar(255)
max_speed : int(11) 9 last_name : varchar(255)
{ & model_id_model : int(11) 2 nip : varchar(255)
order_id_order : int(11) @ phone : varchar(255)
price : decimal(38,2) g postal_code : varchar(255)
Y 4 salon_id_salon : int(11) 2 street : varchar(255)
seating_capacity : int(11)

2 name : varchar(255)

Mo

2 id_salon : int(11)

salon

& capacity : varchar(255)

9 city : varchar(255)

5 name : varchar(255)

° postal_code : varchar(255)
5 street : varchar(255)

= website : varchar(255)

Figure 1: Relational database schema.

Using the REST API enabled consistent testing of system
load and response times. The goal of this approach was
to make a fair and reliable comparison of the efficiency
of the technologies studied.

3.1. Scientific environment description

To conduct the tests, the tools and environments pre-
sented in Table 1 were used.

Table 1: Research tools and environments.

Category Technology
Programming lan- Java 21 Apex (Salesforce
guages Summer 25 Release)
MySQL 10.4.27, Salesforce Database
Database systems PostgreSQL (Salesforce Summer
17.5-1 ’25 Release)
Tools for measuring
operation execution JMeter 5.6.3 JMeter 5.6.3
time
Tools for monitor-
ing memory usage Filter using Me- . .
dl%ring ther}::xecf— moryMX%ean Object ApiLog

tion of operations

For the solutions based on Java technology, the hardware
configuration presented in Table 2 was used. In the case
of Salesforce, the hardware parameters of the user’s de-
vice do not directly influence the results, since all com-
puting resources are provided by the Salesforce cloud in-
frastructure. However, stable Internet access was re-
quired for communication with the platform.

Table 2: Hardware configuration for local and Salesforce

solutions
Specification Details
CPU Intel Core i15-9300HF
NVIDIA GeForce GTX
GPU 1660Ti
RAM 16GB 2666 MHz
Storage WD BLACK SSD M.2 1TB
Operating system Windows 10 22H2
Network 300Mb/s fiber-optic Ethernet

3.2. Scientific scenarios

To analyse the performance of the compared technolo-
gies using Apex and Java, a series of research scenarios
was developed, covering various database operations as
well as system load simulation. The study was conducted
according to the scenarios presented in Table 3.

Table 3: Scientific scenario description

Scenario number Description
s Update: 100, 200, 500, 1000 records by a sin-
gle user
S2 Data retrieval using nested queries
$3 Delete: 100, 200, 500, 1000 records simulta-
neously from the database
Insert: 100, 200, 500, 1000 records into the
S4
database
S5 Retrieval of a single record by multiple users
simultaneously
s6 Insertion of a single record by multiple users
simultaneously
S7 Retrieval of data from joined tables by multi-

ple users simultaneously

All test scenarios were carried out in an automated man-
ner using tools that enable performance measurement un-
der different load conditions. Apache JMeter made it pos-
sible to perform both sequential operations and parallel
queries executed by a large number of users. Each of the
scenarios S1-S4 was repeated one hundred times, while
in scenarios S5-S7, 100, 200, 500, and 1000 simultane-
ous queries were executed to analyse the behaviour of the
systems under varying loads. During the tests, not only
the response time of individual operations was measured,
but also the server’s memory usage was monitored. The
data was collected into CSV files and then aggregated by
calculating average values for each case.

4. Results

This section presents the results of experiments compar-
ing the performance of database queries. The research fo-
cuses on determining both execution times and memory
usage during GET, POST, PUT, and DELETE opera-
tions, which were also subject to the Salesforce daily
HTTP request limit of fifteen thousand. The study also
observed that under heavy load an average of 54.8% of
queries failed in local solutions. In the cloud solution no
losses were observed. The results are presented as charts
on logarithmic scale with base ten, separately for each
test scenario, with two charts for each scenario, one for
each measured parameter. Both the average execution
time and the average memory usage were calculated with
respect to a single query.

510

Journal of Computer Sciences Institute

37 (2025) 508-514

Average query execution time

w
10000.00 =
a
&
=
©
]
o
T w2 Number of
1000.00 ﬁ E,‘ 5 records
2 %
- 2 % e O " 100
[- R |
h o g A = oBoe oo
= 385 3 & & m200
E o = = =
o 100.00 =300
=
.= L]
a 1000

10.00

Salesforce

Figure 1: Scenario 1 — PUT method, average query execution
time.

PotgreSQL

MySQL

Database system

1.00

Average memory usage

100000
b} Number of
o records
8 "100
10000 e
]
— 200
8 = & T
=) b P
g | g & G "
g b3 o < 11000
g a g 02 .
=t s 2 2
e S & 3
g 10w
5
]

°
w
o

PotgreSQL

MySQL
Database system

Salesforce

Figure 2: Scenario 1 - PUT method, average memory usage re-
quired to execute a query.

In Figures 1 and 2 for Scenario 1 PostgreSQL demon-
strated the highest performance. However, MySQL also
performed satisfactorily, differing only minimally from
the aforementioned database system. It can also be seen
that Salesforce requires more resources to process a sin-
gle operation.

Average query execution time

1000.00 w
s
=
I
=
100.00 a a
- : -
g
o
£
[
10.00
1.00
Salesforce MySQL PotgreSQL

Database system

Figure 3: Scenario 2 — GET method, average query execution
time.

Average memory usage

~
o b
EN :
10.00 “
— 100
=]
=,
&
E)
&
a
&
S o010
o
Z
en
S
=
0.01
Salesforce MySQL PotgreSQL

Database system

Figure 4: Scenario 2 — GET method, average memory usage
required to execute a query.

For Scenario 2 in Figures 3 and 4, there are only small
differences in query execution time and memory usage
between MySQL and PostgreSQL. Salesforce, however,
required significantly more time, although with much
lower memory consumption.

Average query execution time

10000.00 .
o
S &
o = 2
v 3 =
Lo = Number of
1000.00 g records
. -
< L w N m100
e =2 m 2 PO e]
e 4= 3= 3 2R - n200
< 100.00 =0
'E = 1000

10.00

Salesforce

PotgreSQL

MySQL

Database system

1.00

Figure 5: Scenario 3 - DELETE method, average query execution
time.

Average memory usage

100.00

32.04

‘Number of
records

16.04
2543
25.21

100

PotgreSQL

1473
1441

10.00

"
< B}
o
- by g @
- ~ S
M ©
+
&
-
100 I

Salesforce MySQL
Database system

Memory usage [kB]

Figure 6: Scenario 3 — DELETE method, average memory usage
required to execute a query.

511

Journal of Computer Sciences Institute

37 (2025) 508-514

For synchronous DELETE queries executed by the same
user, PostgreSQL once again proved to be the most effi-
cient database system, as shown in Figures 5 and 6.

Average query execution time
2

4780.8¢

10000.00 b
o0
o
5 8 -
g & Number of
-3
1000.00 - records
o & g
- = 2 - O s " 100
842 g9 e T4 2 5
B g 8 P& = o
s 100.00 500
& = 1000
10.00
1.00
Salesforce MySQL PotgreSQL
Database system
Figure 7: Scenario 4 — POST method, average query execution
time.
Average memory usage
1000.00 2
g
L 7
3
3
2 Number of
- records
x
100.00 . = =100
3
E © _ 200
= =} 500
P . g o @
z © = = 1000
- = =
2 10.00
g
=

o @
2 =
I'\I

PotgreSQL

&
oo
I'\I

MySQL
Database system

1.00
Salesforce

Figure 8: Scenario 4 - POST method, average memory usage
required to execute a query.

In the POST method, presented in Figures 7 and 8,
Salesforce required the most resources of all scenarios
tested so far. In terms of execution time, PostgreSQL was
once again the fastest database. However, for memory us-
age, MySQL and PostgreSQL had similar memory usage
with small data sets, but with larger data sets, Post-
greSQL was the most efficient system.

Average query execution time

100000.00

10747.20
12014.73
13399.99

v om oo
g g 5818
o« =R A
7 S A
10000.00 © E S S Number of
users
s 2 g = m oo
P S
gluuuan § @ g el =200
= =500
E = 1000
100.00
10.00
1.00
Salesforce MySQL PotgreSQL

Database system

Figure 9: Scenario 5 — GET method, average query execution
time.

Average memory usage

1000000.00

o
“
2 I8 5o¢
o s s @ 2 Z
S P I =25 F
B . 2 = = o = Number of
o 5 ®
o b users
a B
1000.00 =100
E 200
= =500
&
g 1000
2
g' 1.00
g EEEN
5
= 222 2
s s & o
0.00

Salesforce MySQL

Database system

PotgreSQL

Figure 10: Scenario 5 — GET method, average memory usage
required to execute a query.
In Scenario 5 the cloud solution showed a significant ad-
vantage in handling a large number of simultaneous que-

ries from multiple users. This is reflected in the data
shown in Figures 9 and 10.

Average query execution time

100000.00

a8 oG
o 3 a5
a 8 S 9 o 2 9 g
g om o5 F s 83§
=)
2 &
10000.00 = = Number of
b1 users
R
= 3
_ a2
« 8 2 g u100
7 2
= 1000.00 g =200
‘a -
A us00
o
& w1000
100.00
10.00
1.00

Salesforce MySQL

Database system

PorgreSQL

Figure 11: Scenario 6 — POST method, average query execution
time.

Average memory usage

512.69
78193
535.28
76301
884.55

o
3 o &
n 'S
1000 00 S & 2
I g ki
Nummber of
users
100.00
=100
) 200
= 500
& 1000
a2 1000
=
=3
g
g
- IIII
o momom
998 9
010 s S S S

Salesforce PotgreSQL

Database system

Figure 12: Scenario 6 — POST method, average memory usage
required to execute a query.

In Figures 11 and 12 Salesforce once again outperformed
the local solutions. At the same time, MySQL and Post-
greSQL achieved similar query execution times, with a
slight advantage for PostgreSQL. However, in terms of
memory usage, MySQL produced better results.

512

Journal of Computer Sciences Institute

37 (2025) 508-514

Average query execution time

2 =
»

I
R
10000.00 - -
&
i
Database system

PotgresSQl

05.11

302.06
'698.64
4758.47
7029.33
9979.46
9013.13

4

Number of
users

95
9

1000.00

379.01

o w
noo

Salesforce

=100

35
39

-200

500

Time [ms]

100.00
= 1000

10.00

100
MySQL

Figure 13: Scenario 7 - GET method, average query execution
time.

Average memory usage

2

7733.8;

10000.00

156738
4023.11
1097.02

Number of

1000.00 users

255.88
93.39
116.77
148.06

=100
100.00 200

m500
10.00
=1000

PotgreSQL

1.00

Memory usage [KB]

0.10

S S S o
s & & o

Salesforce

0.01

MySQL
Database system

Figure 14: Scenario 7 — GET method, average memory usage re-
quired to execute a query.

The data in Figures 13 and 14 again point to Salesforce’s
advantage under heavy load. For local database systems
this time MySQL turned out to be more efficient.

5. Conclusions

The research conducted made it possible to carry out

a comprehensive analysis of the impact of the choice of

programming language and database system on the per-

formance of data processing applications in different us-
age scenarios. Both local and cloud environments were
taken into account, as well as the behavior of systems in
relation to the amount of data processed and the number
of simultaneous users. Based on the results for Scenarios

1 to 4, where queries were sent sequentially, the follow-

ing conclusions can be drawn:

1. PostgreSQL consistently showed the lowest query
times and relatively low memory usage. This means
that with appropriate configuration and application, it
offered the highest performance.

2. Salesforce performed worse in this type of query. It
recorded noticeably higher execution times and
higher memory usage per query.

3. Processing a large number of records in a single query
in the cloud solution required significantly more re-
sources, both in terms of time and system usage, com-
pared with local solutions.

For Scenarios 5 to 7, where queries were sent in parallel
by a large number of users, the conclusions are as fol-
lows:

1. Salesforce as a cloud solution achieved significantly
better results, both in terms of response time and sta-
bility. This suggests that cloud architecture manages
resources more efficiently and balances the load bet-
ter.

2. Local solutions suffered from very high losses in
query processing, showing limited effectiveness in
resource management. This confirms the lack of pro-
portional growth in resource usage, which suggests
the existence of performance bottlenecks and possible
system overload in local environments.

Based on the research conducted, it can be concluded that

the choice of technology has a significant impact on the

performance of database operations. The differences be-
tween Apex, a language tightly integrated with the

Salesforce cloud platform, and Java, used in combination

with Spring Data JPA and Spring Boot, are clearly visi-

ble. Java, working with local databases such as Post-
greSQL and MySQL, shows greater efficiency in scenar-
ios involving sequential data processing. It is character-
ized by shorter response times and lower memory usage.

Apex, on the other hand, despite higher resource require-

ments for individual operations, performs better under

parallel load conditions, ensuring stability and shorter re-
sponse times even with a large number of simultaneous
users.

The collected data also confirm that the optimal
choice of technology should depend on the specifics of
the application. There is no universal solution, and tech-
nologies should be selected based on the nature of the ap-
plication and the expected load. In local applications and
for intensive single query data processing, the combina-
tion of Java with PostgreSQL proves to be the better
choice. In cloud environments, where scalability and sup-
port for many users simultaneously is crucial, Apex to-
gether with the Salesforce infrastructure provides a clear
advantage.

References

[1]1 Stack Overflow, Developer Survey 2025 — Technology
(Java), https://survey.stackoverflow.co/2025/technology

[10.09.2025].

[21 What is Apex? Salesforce Developer
https://developer.salesforce.com/docs/atlas.en-
us.apexcode.meta/apexcode/apex_intro_what is_apex.ht

m, [10.09.2025].

Guide,

[3] Best Practices for Deployments with Large Data Volumes,
https://developer.salesforce.com/docs/atlas.en-
us.256.0.salesforce large data volumes_bp.meta/salesfo
rce_large data volumes bp/ldv_deployments_introducti

on.htm, [10.09.2025].

[4] D.R.Migcz, Performance analysis of methods for building
applications on the Salesforce platform, Journal of
Computer Sciences Institute 10 (2019) 24-27,

https://doi.org/10.35784/jcsi.189.

[5]1 W.Maranda, A. Poniszewska-Maranda, M. Szymczynska,

Data Processing in Cloud Computing Model on the

513

https://survey.stackoverflow.co/2025/technology
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_intro_what_is_apex.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_intro_what_is_apex.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_intro_what_is_apex.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_introduction.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_introduction.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_introduction.htm
https://developer.salesforce.com/docs/atlas.en-us.256.0.salesforce_large_data_volumes_bp.meta/salesforce_large_data_volumes_bp/ldv_deployments_introduction.htm
https://doi.org/10.35784/jcsi.189

Journal of Computer Sciences Institute

37 (2025) 508-514

Example of Salesforce Cloud, Information 13(2) (2020)
85, https://doi.org/10.3390/info13020085.

A. Poniszewska-Maranda, R. Matusiak, N.
Kryvinska, Ansar-Ul-Haque Yasar, A real-time service
system in the cloud, Journal of Ambient Intelligence and
Humanized Computing 11 (2020) 961-977,
https://doi.org/10.1007/s12652-019-01203-7.

A. M. Bonteanu, C. Tudose, Performance Analysis and
Improvement for CRUD Operations in Relational
Databases from Java Programs Using JPA, Hibernate,
Spring Data JPA, Applied Sciences 14(7)
(2024) 2743, https://doi.org/10.3390/app14072743.

T. Taipalus, Database management system performance
comparisons: A systematic literature review, Journal of
Systems and Software 208(2) (2023) 111872,
https://doi.org/10.1016/j.jss.2023.111872.

[9]

[10]

[11]

N. Zingirian, M. Maresca, S. Nalin, Efficiency of standard
software architectures for Java-based access to remote
databases, Future Generation Computer Systems 15(3)
(1999) 417-424, https://doi.org/10.1016/S0167-

739X(98)00085-5.

A. Ginanjar, M. Hendayun, Spring Framework Reliability
Investigation Against Database Bridging Layer Using Java
Platform, Procedia Computer Science 161 (2019) 1036-
1045, https://doi.org/10.1016/j.procs.2019.11.214.

S. Zan, Evaluating Database and Indexing Performance on
the Salesforce Platform, Master thesis, Polish-Japanese
Academy of Information Technology, Warsaw, 2025.

514

https://doi.org/10.3390/info13020085
https://doi.org/10.3390/app14072743
https://doi.org/10.3390/app14072743
https://doi.org/10.1016/j.jss.2023.111872
https://doi.org/10.1016/S0167-739X(98)00085-5
https://doi.org/10.1016/S0167-739X(98)00085-5
https://doi.org/10.1016/j.procs.2019.11.214

