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ABSTRACT  

Space debris represents a true risk for current and future activities in the circumterrestrial space, and 

remediation activities must be set out to guarantee the access to space in the future. For active debris removal, 

the development of an effective capturing mechanism remains an open issue. Among several proposals, cable 

nets are light, easily packable, scalable, and versatile. Nonetheless, guidance, navigation, and control aspects are 

especially critical in both the capture and post-capture phases. We present a finite element model of a 

deployable cable net. We consider a lumped mass/cable net system taking into account non-linearities arising 

both from large displacements and deformations, and from the different response of cables when subject to 

tension and compression. The problem is stated by using the nodal coordinates as Lagrangian coordinates. Lastly, 

the nonlinear governing equations of the system are obtained in a form ready for numerical integration. 
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1. Introduction 

Missions in the circumterrestrial space produce debris that represent a threat for current and 

future space activities. Once the main national space agencies became aware of the problem, they 

have developed and adopted mitigation guidelines to reduce the debris production rate from new 

missions [1] [2]. However, the overall number of space debris is steadily increasing because of 

increasing space activities. As a consequence, remediation activities must be set out to guarantee the 

access to space for future generations. In particular, the disposal of massive objects abandoned around 

the Earth would result effective to secure the most valuable orbital regions [3] [4]. 

For active debris removal (ADR), the development of an effective capturing mechanism is still a 

problematic aspect of the mission architecture. Two main alternatives have been considered: using 

robotic arms or tethered nets. In the last twenty years both Space Shuttle and International Space 

Station have been equipped with robotic arms. Among several uses, robotic arms have been used 

effectively for capture of cooperative and attitude-stabilized spacecrafts, both under human control 

and by automated procedures [5]. Anyhow, their employment for capture of non-cooperative debris 

has still to be proven. In fact, the complexity of approaching manoeuvres can be guessed if we consider 

a tumbling target with large appendages, form which a distance between 1 and 3 meters has to be 

reached. For comparison, cable nets can be thrown from distances of 20 meters. Also, they are light, 

easily packable, scalable, and versatile. Nonetheless, guidance, navigation, and control (GNC) aspects 

are especially critical for nets in the capture and post-capture phases [6]. 

In a typical ADR mission, the chaser will first rendezvous with the target and then throw a tethered 

net to capture it. The deployment of the net can be achieved by ejecting a number of bullet masses 
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placed on its border. When cables connected to the bullets start tensioning, they pull along 

neighbouring portions of the net. 

Several theoretical models have been proposed to describe the deployment and capture 

processes. Benvenuto et al. [7] and Botta et al. [8] modelled the net as a system of concentrated 

masses connected to each other by linear spring-dampers. In their models, springs react only in tension 

and infinitesimal strains are considered. Shan et al. [9] compared the simple lumped mass-spring 

model with a more refined model based on the absolute nodal coordinate formulation (ANCF) 

proposed by Shabana [10]. They used a third-order cable element [11] and considered finite strains 

through the Green-Lagrange strain tensor. Their cable element admits compressive stresses, which 

may produce buckling. The lumped mass-spring and ANCF models gave similar results in terms of the 

overall behaviour of the net, but the ANCF model was much more computationally expensive. 

We propose a finite element (FE) model of the cable net with lumped nodal masses and first-

order cable elements. We assume the nodal positions as the main unknowns of the problem. Large 

displacements and finite deformations are considered through the Green-Lagrange strain tensor [12]. 

Cable elements are assumed to react only in tension with a linear relationship between the axial strain 

and the corresponding component of the work-conjugate second Piola-Kirchhoff stress tensor [13]. 

Global damping is introduced into the model according to Rayleigh’s hypothesis [14]. Lastly, the 

governing equations of the nonlinear dynamic problem are obtained by using the standard assembly 

procedure of the finite element method. Hence, the dynamic response of the cable net can be 

determined by applying a suitable numerical integration scheme. 

2. Finite element formulation 

2.1. Kinematics 

In the framework of the finite element method, the cable net is modelled as a discrete system 

consisting of m elements of finite size, connected to each other at n points called nodes (Fig. 1). Mass, 

damping, elastic properties, as well as applied loads and restraints are modelled as lumped nodal 

entities in the FE model. Nodes are located at the intersections between cables, while elements 

correspond to the portions of cables included between them. 

Current and reference configurations are referred to a fixed Cartesian reference system, O x1x2x3. 

Denoting by Pi the point corresponding to the ith node (i = 1, …, n), its position vector is 

xi = Pi – O  3, and its displacement vector is i i i i iP P= − = −u x x , where a bar is used here and in 

the following to distinguish the reference configuration,  , from the current one,  . The reference 

configuration is by definition undeformed. We collect the position vectors of all the nodes of the 

system into a single vector x  3n, which we assume as the main unknown of the problem. 

 

Figure 1. Finite element model of a generic cable net 
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2.2. Cable element 

Let us consider the eth cable element (e = 1, …, m) connecting the ith and jth nodes. We denote the 

nodal position vector of the element in the current configuration as xe = [xi; xj]  6. The element 

length, Le, as the distance between its nodes, can be calculated from the following formula: 

2 T

e e eL = x x , (1) 

where 

− 
=  
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I I

I I
  (2) 

is a constant matrix, here introduced to automate the subtraction between the nodal displacements, 

and I  3 × 3 is the identity matrix. The component of the Green-Lagrange strain tensor in the element 

axial direction is evaluated with respect to the reference configuration as: 
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The axial stress in the cable element is obtained by a conventional constitutive law that accounts 

for the inability of cables to sustain relevant compressive stresses. When the distance between the 

element nodes is less than its reference length, the element is considered slack, and the axial stress is 

assumed null. Otherwise, a linearly elastic relationship is assumed between the Green-Lagrange strain 

and second Piola-Kirchhoff stress [13]: 
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where E is the Young’s modulus of the material. 

By assuming linear shape functions for the element, the secant elastic stiffness matrix can be 

expressed as follows [12]: 

( ) 11
e
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=S x  , (5) 

where eA is the cross-section area of the element, evaluated in the reference configuration. Besides, 

the tangent elastic stiffness matrix is 
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A simple lumped mass matrix is considered for each element [14]: 

1

2
e e e eL A
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I 0
M

0 I
, (7) 

where e  is the mass density in the reference configuration, and 0 denotes the null matrix in 3 × 3. 

For the clarity of presentation, finally we introduce the assembly matrix of the element, 

Ae  6 × 3n. It is defined as a null matrix, except for the entries corresponding to columns from 3i – 2 
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to 3i into the first 3 rows, and for the entries corresponding to columns from 3j – 2 to 3j into the rows 

from 4 to 6, where identity matrices are placed. As a result, the nodal position vector of the element 

can also be expressed as xe = Ae x. 

2.3. Cable net 

The mass, secant stiffness, and tangent stiffness matrices – belonging to 3n × 3n – of the cable net 

are obtained by assembling the corresponding matrices of the elements: 

( ) ( ) ( ) ( )T T T

1 1 1

m m m

e e e e e e e e e e e

e e e= = =

= = =  M A M A S A S A T A T Ax x x x, , and , (8) 

where dependence on nodal positions is highlighted. 

Finally, global damping is introduced into the model according to Rayleigh’s hypothesis [14]. The 

damping matrix is obtained as the sum of two contributions proportional to the mass and tangent 

stiffness matrices of the system, respectively, evaluated in the reference configuration: 

( ) = +D M T x , (9) 

where  and  are suitable combination coefficients. 

3. Governing equations 

The nonlinear dynamic problem for the deployable cable net is governed by the following 

differential equation set: 

( ) ( )t+ + =M D Sx x x x p , (10) 

where both the nodal positions, x, and the nodal loads, p, depend on time t. The upper dot denotes 

differentiation with respect to time. 

The governing equations can be integrated numerically, and this will be part of the prosecution 

of our work. Besides, the order of magnitude of the main external forces shall to be evaluated, and the 

most significant ones among them shall be include into the theoretical model. 

4. Conclusions 

Deployable cable nets are promising capture systems for the active removal of space debris, but 

the development of accurate and effective simulation tools is crucial for allowing their application. 

We have proposed a FE model of a cable net with lumped nodal masses and first-order cable 

elements. In line with the ANCF, nodal positions have been adopted as the main unknowns of the 

problem. Large displacements and finite deformations have been considered through the Green-

Lagrange strain tensor. Cable elements have been assumed to react only in tension with a linear 

relationship between the axial strain and the corresponding component of the work-conjugate second 

Piola-Kirchhoff stress tensor. Global damping has been introduced into the model according to 

Rayleigh's hypothesis. The governing equations have been stated. 

The presented theoretical model is only a first step towards the effective simulation of a 

deployable cable net. In future works we are going to integrate numerically the governing equations 

starting from suitable initial conditions. Then, we will enhance the model by accounting for the contact 

phenomena arising after the impact of the net with the target. 
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