
Journal  of Technology and Exploitation   ISSN 2451-148X  
in Mechanical  Engineering    Available online at:  
Vol. 3, no. 1, pp. 13–20, 2017   http://jteme.pl 
https://doi.org/10.35784/jteme.533 

Research article 
 

13 
 

© Z. Czyż et al., Published by Polish Association for Knowledge Promotion, 2017 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0) 

(http://creativecommons.org/licenses/by/4.0)  

AIR FLOW ANALYSIS AROUND THE AUTOGYRO FUSELAGE 
 

Zbigniew Czyż1, Ibrahim Ilhan2, Mert Akcay 3, Jacek Czarnigowski4 
 
1 Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of 

Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland, orcid.org/0000-0003-2281-1149, e-mail: z.czyz@pollub.pl 
2 Faculty of Engineering, Necmettin Erbakan University, Mehmet Hulusi Baybal, PhD. Cd. No:12, 42060 Konya, 

Turkey, e-mail: ibboilhan95@gmail.com 
3 Department of Automotive Engineering, Cumhuriyet University, Kayseri Cd. 58070 Sivas/Merkez Turkey,  

e-mail: akcay.mert@outlook.com 
4 Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University 

of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland, e-mail: j.czarnigowski@pollub.pl 

 

Submitted: 2017-06-11 / Accepted: 2017-06-22 / Published: 2017-06-30 

 
ABSTRACT  

The paper presents the results of the simulation of the air flow around the gyroplane without the influence of the rotor 

and pusher propellers. Three-dimensional calculations were performed using ANSYS Fluent software. Based on the 

calculations, the values of the drag force and the lift force on each component of the rotorcraft were determined. 

Based on the results obtained, the effect of angle of attack on the aerodynamic forces was obtained. 
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ANALIZA PRZEPŁYWU POWIETRZA WOKÓŁ KADŁUBA WIATRAKOWCA 
 

STRESZCZENIE  

W pracy przedstawiono wyniki symulacji opływu modelu wiatrakowca bez wpływu wirnika nośnego oraz śmigła 

pchającego. Trójwymiarowe obliczenia wykonano za pomocą programu ANSYS Fluent. Na podstawie 

przeprowadzonych obliczeń wyznaczono wartości siły oporu oraz siły nośnej działające na poszczególne części 

składowe statku powietrznego. W oparciu o uzyskane wyniki otrzymano wpływ kąta natarcia na siły aerodynamiczne. 

SŁOWA KLUCZOWE: CFD, obliczeniowa mechanika płynów, wiatrakowiec, aerodynamika, siła nośna, siła oporu 

 

 

1. Introduction 

Numerical investigations in comparison to the experimental research permit to validate 

assumptions at the design on early stage of the project and avoid costly process related to preparation 

of model or prototype to test bench. Using the CFD method, aerodynamic characteristics can be 

compiled and the aircraft's stability assessed. Simulation testing is a common tool in aircraft design. 

They allow, among other things, to determine their aerodynamic properties by establishing the 

external forces acting on them. Typically, these methods are less expensive and often make it possible 

to obtain data that are difficult to obtain in experimental research [1], [2]. Calculations of the 

aerodynamic properties of helicopter or gyroplane geometry have recently been the subject of 

numerous research papers. In work [3] the aerodynamic characteristics of the forces and moments 

acting on the helicopter fuselage are determined in two configurations: at the rotor blast in flight 
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conditions, as well as at a progressive speed. In work [4] simulation studies on flow around the 

helicopter have been carried out on various equipment configurations (camera, wings, pylons, 

reinforcement). These studies concerned the impact of individual helicopter units on aerodynamic 

characteristics. The impact of additional external components on the aerodynamic properties of the 

aircraft has been demonstrated. In many works (e.g. [3], [4], [5]) an additional VBM module was also 

used to simulate rotor operation. This module is based on the blade element theory, which defines the 

forces and moments acting on the elementary blade of width dR. Its operation is based on determining 

the increment of momentum generated by the rotor components. 

2. Methodology and boundary conditions 

The 3D model of the research object was done in CATIA v5 software. Figures 1 and 2 show a view 

of the geometric model of the gyroplane. The computational domain for the research object with the 

length of 0.632 m was made using an enclosure tool with a set distance for each direction equal 2 m 

to achieve total dimensions of 4,632 m x 4,294 m. 

 

 
Fig. 1. Side view of the geometrical model of autogyro 

 

 
Fig. 2. Front view (left side) and back view (right side) of the geometrical model of autogyro 

 

Numerical investigations were carried out using ANSYS / Fluent computational solver. The 

turbulence model k-ω SST was assumed for calculations. This was a model that combined two other 

models. The basic, most commonly used k-ε model did not work properly when modeling the boundary 

flow and did not reflect the phenomena occurring in the boundary layer. The results obtained with this 

model are reliable when there is a slow flow in which there is a turbulent area away from the boundary 

layer. A model that can be replaced with k-ε and which yields satisfactory results at flow close to the 

test wall is k-ω Wilcox. By combining these two models, one - k-ω SST was created, which used the 

Wilcox k-ω model at the boundary layer, and in the areas away from the research object wall k-ε, so 

that the numerical results obtained were more reliable and comparable to the real ones. Therefore, 

for our consideration of the gyroplane fuselage in scale 1: 8 the k-ωSST model was chosen [1], [6]. 
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Geometries similar to the considered case are most often discretized using tetrahedral elements. 

The size of the elements, their quantity and quality had a significant influence on the results of the 

calculations [7], [8]. Figure 3 shows the discrete model of the gyroplane tested. This is a tetrahedrons 

grid using the patch conforming algorithm. On the surface of the fuselage, a inflation with the option 

of smooth transition is defined. 

 

Fig. 3. General view of the gyroplane surface after discretization 

 

The angle of attack of the fuselage α was calculated with a positive sign clockwise and the angle 

of the horizontal stabilizer adjustment was measured with respect to the plane XOY (positive up). On 

the front surface the velocity inlet boundary condition was given, and the pressure outlet boundary 

condition on the surface of the back wall [7]. For calculations, a steady state and pressure based 

simulation was selected. As a material, which flows around the research object being selected air and 

it assumes that the flow is incompressible and in defining the function of the material was selected: 

ideal - gas. Table 1 contains general settings of the numerical analysis. The turbulent intensity factor 

was set at 1%, while the turbulent length scale was defined as 0.3 m. Turbulence length scale l is the 

physical quantity associated with the size of the swirls that capture energy in turbulent motion [9]. 

Fully developed flows are limited by the dimensions of the duct. Approximately, the relation between 

the factor l and the physical dimension of the duct L is described by the relation l = 0.07 L. 

 
Table 1. General settings of the numerical analysis 

Basic settings 
Type of 
calculation 

Pressure-based 

Time Steady 

Turbulence model k-omega (2-eqn) SST 

Materials 

Gas Air 

Density ideal−gas 

Viscosity Constant 

Boundary 
conditions 

Inlet 

Velocity 20 [m/s] 

Turbulent intensity [%] 1 

Turbulent Length Scale [m] 0.3 

Outlet 

Pressure- outlet Gauge pressure 0 Pa 

Turbulent intensity [%] 1  

Turbulent Length Scale [m] 0.3 
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3. Results 

Aerodynamic forces calculations were made for angles of attack from 0 ° to 20 °. Figures 4 to 8 

illustrate the results of the pressure distribution on the surface of the aircraft concerned and the 

pressure and velocity contours on the symmetrical plane of the computational domain. 

 

 

 
Fig. 4. Front view of the pressure contour on the autogyro surface 

 
Fig. 5. Side view of the pressure contour on the autogyro surface 
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Fig. 6. Top view of the pressure contour on the autogyro surface  
 

 

Fig. 7. Pressure contour on the symmetrical plane of the computational domain 
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Fig. 8. Velocity contour on the symmetrical plane of the computational domain 

 

Figure 9 shows the impact of angle of attack on the aerodynamic forces in the range of 0° to 20°. 

 
Fig. 9. Values of the lift force and drag force as a function of angle of attack 

 

Table 2 shows the results of the calculation of aerodynamic forces broken divided into the 

individual components of the gyroplane tested for the selected angle. Results for other angles will be 

presented as bar graphs in Figures 10 and 11. 
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Table 2. Values of drag force and lift force for angle of attack 20° 

No. Name 
Drag Force 

[N] 
Lift Force 

[N] 

1. Tail beam - left 0.13883 0.08418 

2. Tail beam - right 0.12708  0.08829 

3. Fuselage 1.91952 2.08418 

4. Mast 0.13673 0.06112 

5. Back of the fuselage 0.01119 -0.00429 

6. Vertical stabilizer - left 0.07627 -0.01356 

7. Vertical stabilizer - right 0.07102 -0.01179 

8. Horizontal stabilizer 0.92155 2.52674 

9. Cone -0.02007  0.01957 

 Total 3.38211 3.57907 

 

 
Fig. 10. Influence of angle of attack on the drag force generated by individual components of the gyrocopter 

 

 
Fig. 11. Influence of angle of attack on the lift force generated by individual components of the gyrocopter 
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4. Conclusion 

The paper presented the results of the simulation of the flow around the gyroplane without 

the influence of the rotor and pusher propellers. The calculations allowed to determine the values of 

the drag force and lift force acting on the individual components of the rotorcraft. Based on the results, 

the influence of the angle of attack on the aerodynamic forces and the percentage of forces generated 

by the individual components of the rotorcraft on the total value was obtained. For a steady flow rate 

of 20 m/s the maximum value of the velocity near the fuselage reached 33.1 m/s. The maximum 

overpressure on the fuselage surface was 303.3 Pa, while the negative pressure was -878.1 Pa. For the 

angle of attack 0° the maximum drag force generated the fuselage while the drag force generated by 

the horizontal stabilizer was 6.6% relative to the fuselage. Due to the zero angle of attack, the force 

generated by the fuselage was negative. In the case of the mast and the horizontal stabilizer, we can 

observe  respectively 40.3% and 68% of the force relative to the fuselage. The horizontal stabilizer drag 

force increased as a function of angle of attack. For an angle of attack of 0°, the drag force was 

0.07757 N, while for an angle of attack 20° it is 0.92155 N. As a result, the percentage of force 

generated by the horizontal stabilizer increased from 6.6% to 48%. In the case of lift force 

on the horizontal stabilizer at 20° it raised to 2.526 N, which was 21% higher than the fuselage. 

As shown in Figure 11, the horizontal stabilizer generated the largest force. This is related to the need 

to guarantee stability in this direction. 
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