APPLICATION FOR FUNCTIONALITY AND REGISTRATION IN THE CLOUD OF A MICROCONTROLLER DEVELOPMENT BOARD FOR IOT IN AWS
Elizabeth Perez
m19371374@apizaco.tecnm.mxComputer Systems Department, TecNM/Campus Apizaco Tlaxcala (Mexico)
Juan A. Araiza
Computer Systems Department, TecNM/Campus Apizaco Tlaxcala, Mexico (Mexico)
Dreysy Pozos
Computer Systems Department, TecNM/Campus Apizaco Tlaxcala, Mexico (Mexico)
Edmundo Bonilla
Computer Systems Department, TecNM/Campus Apizaco Tlaxcala (Mexico)
Jose C. Hernandez
Computer Systems Department, TecNM/Campus Apizaco Tlaxcala (Mexico)
Jesus A. Cortes
Microside Technology, Software Development Department, Tlaxcala de Xicohténcatl (Mexico)
Abstract
The use of the Amazon Web Services cloud enables new functionalities that are not possible with traditional solutions: low latency, local data processing and storage, and direct connectivity to other cloud services. Reimagining the way IoT connectivity services are presented by combining AWS cloud technology with mobile connectivity offers rapid prototyping to help connect devices natively over Wi-Fi. For this, the MQTT communication protocol is used to interact with the IoT device and exchange data, which allows controlling the basic functions of a sensor node. The installation is realized through a software development kit (SDK), which allows the creation of an application for Android devices. This solution gives the option to integrate together, improving the connectivity of the IoT system. The results enable board logging and network configuration, and can also be used to control the IoT device. The embedded firmware provides the required security functions.
Keywords:
AWS, IoT, MQTTReferences
Auer, M.E., & Zutin, D.G. (2018). Online Engineering & Internet of Things. Proceedings of the 14th International Conference on Remote Engineering and Virtual Instrumentation REV 2017, held 15–17 March 2017, Columbia University, New York, USA. Springer.
DOI: https://doi.org/10.1007/978-3-319-64352-6
Google Scholar
AWS. (n.d.). Amazon Web Services. Retrieved March 18, 2021 from https://aws.amazon.com/es/what-is-aws
Google Scholar
AWS Kinesis. (n.d.). Amazon Web Services. Retrieved March 18, 2021 from https://aws.amazon.com/es/kinesis
Google Scholar
AWS Device Shadow. (n.d.). Amazon Web Services. Retrieved March 18, 2021 from https://docs.aws.amazon.com/es_es/iot/latest/developerguide/iot-device-shadows.html
Google Scholar
AWS DynamoDB. (n.d.). Amazon Web Services. Retrieved March 18, 2021 from https://aws.amazon.com/es/dynamodb
Google Scholar
AWS IoT Core. (n.d.). Amazon Web Services. Retrieved March 18, 2021 from https://aws.amazon.com/es/iot-core/
Google Scholar
Beningo, B.J. (2015). Bootloader design for MCUs in Embedded Systems, Rev A2. Beningo Engineering.
Google Scholar
Chang, K.C., Chu, K.C., Wang, H.C., Lin, Y.C., & Pan, J.S. (2020). Agent-based middleware framework using distributed CPS for improving resource utilization in smart city. Future Generation Computer Systems, 108, 445–453. https://doi.org/10.1016/j.future.2020.03.006
DOI: https://doi.org/10.1016/j.future.2020.03.006
Google Scholar
DocIRS Document Information Retrieval Systems. (n.d.). DocIRS Technology. Retrieved March 18, 2021 from https://www.docirs.cl
Google Scholar
Guha Roy, D., Mahato, B., De, D., & Buyya, R. (2018). Application-aware end-to-end delay and message loss estimation in Internet of Things (IoT) — MQTT-SN protocols. Future Generation Computer Systems, 89, 300–316. https://doi.org/10.1016/j.future.2018.06.040
DOI: https://doi.org/10.1016/j.future.2018.06.040
Google Scholar
Guth, J., Breitenbücher, U., Falkenthal, M., Fremantle, P., Kopp, O., Leymann, F., & Reinfurt, L. (2018). A Detailed Analysis of IoT Platform Architectures: Concepts, Similarities, and Differences. In B. Di Martino, K.C. Li, L. Yang, A. Esposito (Eds.), Internet of Everything. Internet of Things (Technology, Communications and Computing) (pp. 81–101). Springer. https://doi.org/10.1007/978-981-10-5861-5_4
DOI: https://doi.org/10.1007/978-981-10-5861-5_4
Google Scholar
Imtiaz Jaya, N., & Hossain, M.F. (2019). A Prototype Air Flow Control System for Home Automation Using MQTT over Websocket in AWS IoT Core. In Proceedings – 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2018 (pp. 111–117). IEEE. https://doi.org/10.1109/CyberC.2018.00032
DOI: https://doi.org/10.1109/CyberC.2018.00032
Google Scholar
Kim, Y., Lee, N., Kim, B., & Shin, K. (2019). Realization of IoT based fish farm control using mobile app. In Proceedings - 2018 International Symposium on Computer, Consumer and Control (pp. 189–192). IEEE. https://doi.org/10.1109/IS3C.2018.00055
DOI: https://doi.org/10.1109/IS3C.2018.00055
Google Scholar
Mullapudi, R.K., Mallika, G., Nikitha, K., & Bhanu Sree, M. (2020). Weather Monitoring using AWS Cloud Computing. International Journal of Advance Research and Innovation, 8(2), 205–208.
DOI: https://doi.org/10.51976/ijari.822019
Google Scholar
Muñoz Carrasco, J., & Garrido Márquez, D. (2018). IoT home automation application using Android Things. https://riuma.uma.es/xmlui/bitstream/handle/10630/17551/Mu%C3%B1oz%20Carrasco%2C%20Juan%20Memoria.pdf?sequence=1&isAllowed=y
Google Scholar
Parres-Peredo, A., Piza-Davila, I., & Cervantes, F. (2019). Building and evaluating user network profiles for cybersecurity using serverless architecture. In 2019 42nd International Conference on Telecommunications and Signal Processing, TSP 2019 (pp. 164–167). IEEE. https://doi.org/10.1109/TSP.2019.8768825
DOI: https://doi.org/10.1109/TSP.2019.8768825
Google Scholar
Quadri, N.S., & Yadav, K. (2018). Efficient Data Classification for IoT Devices using AWS Kinesis Platform. In 21st Saudi Computer Society National Computer Conference, NCC 2018 (pp. 1–5). IEEE. https://doi.org/10.1109/NCG.2018.8593105
DOI: https://doi.org/10.1109/NCG.2018.8593105
Google Scholar
Salazar, J., & Silvestre, Y. S. (n.d.). Internet de las cosas. https://core.ac.uk/download/pdf/81581111.pdf
Google Scholar
Tsai, M.H., Hsu, Y.C., & Lo, N.W. (2020). An Efficient Blockchain-based Firmware Update Framework for IoT Environment. In Proceedings - 2020 15th Asia Joint Conference on Information Security, AsiaJCIS 2020 (pp. 121–127). IEEE. https://doi.org/10.1109/AsiaJCIS50894.2020.00030
DOI: https://doi.org/10.1109/AsiaJCIS50894.2020.00030
Google Scholar
Villamil, X., & Guarda, T. (2019). Mobile application developed with agile methodology for IoT controlled from a LAN / WAN network with a free hardware development board (Arduino). Iberian Journal of Information Systems and Technologies, 17, 379–392.
Google Scholar
Wasoontarajaroen, S., Pawasan, K., & Chamnanphrai, V. (2017). Development of an IoT device for monitoring electrical energy consumption. In 2017 9th International Conference on Information Technology and Electrical Engineering, ICITEE 2017 (pp. 1–4). IEEE. https://doi.org/10.1109/ICITEED.2017.8250475
DOI: https://doi.org/10.1109/ICITEED.2017.8250475
Google Scholar
Wu, P., Liu, D., Wang, J., Yuan, B., & Kuang, W. (2020). Detection of Fake IoT App Based on Multidimensional Similarity. IEEE Internet of Things Journal, 7(8), 7021–7031. https://doi.org/10.1109/JIOT.2020.2981693
DOI: https://doi.org/10.1109/JIOT.2020.2981693
Google Scholar
Authors
Elizabeth Perezm19371374@apizaco.tecnm.mx
Computer Systems Department, TecNM/Campus Apizaco Tlaxcala Mexico
Authors
Juan A. AraizaComputer Systems Department, TecNM/Campus Apizaco Tlaxcala, Mexico Mexico
Authors
Dreysy PozosComputer Systems Department, TecNM/Campus Apizaco Tlaxcala, Mexico Mexico
Authors
Edmundo BonillaComputer Systems Department, TecNM/Campus Apizaco Tlaxcala Mexico
Authors
Jose C. HernandezComputer Systems Department, TecNM/Campus Apizaco Tlaxcala Mexico
Authors
Jesus A. CortesMicroside Technology, Software Development Department, Tlaxcala de Xicohténcatl Mexico
Statistics
Abstract views: 94PDF downloads: 38
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Sergio SOTO, Edmondo BONILLA, Alberto PORTILLA, Jose C. HERNANDEZ, Oscar ATRIANO, Perfecto M. QUINTERO, FOOD DELIVERY BASED ON PSO ALGORITHM AND GOOGLE MAPS , Applied Computer Science: Vol. 16 No. 1 (2020)
- Rosa Maria VAZQUEZ, Edmundo BONILLA, Eduardo SANCHEZ, Oscar ATRIANO, Cinthya BERRUECOS, APPLICATION OF DATA MINING TECHNIQUES TO FIND RELATIONSHIPS BETWEEN THE DISHES OFFERED BY A RESTAURANT FOR THE ELABORATION OF COMBOS BASED ON THE PREFERENCES OF THE DINERS , Applied Computer Science: Vol. 15 No. 2 (2019)
Similar Articles
- Donatien Koulla Moulla, Ernest Mnkandla, Alain Abran, SYSTEMATIC LITERATURE REVIEW OF IOT METRICS , Applied Computer Science: Vol. 19 No. 1 (2023)
- Hanan M. SHUKUR, Shavan ASKAR, Subhi R.M. ZEEBAREE, THE UTILIZATION OF 6G IN INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA, CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT , Applied Computer Science: Vol. 17 No. 4 (2021)
- Ihor PYSMENNYI, Anatolii PETRENKO, Roman KYSLYI, GRAPH-BASED FOG COMPUTING NETWORK MODEL , Applied Computer Science: Vol. 16 No. 4 (2020)
- Marcin Badurowicz, Sebastian Łagowski, USAGE OF IOT EDGE APPROACH FOR ROAD QUALITY ANALYSIS , Applied Computer Science: Vol. 19 No. 1 (2023)
- Sebastian CYGAN, Barbara BOROWIK, Bohdan BOROWIK, STREET LIGHTS INTELLIGENT SYSTEM, BASED ON THE INTERNET OF THINGS CONCEPT , Applied Computer Science: Vol. 14 No. 1 (2018)
- Alexandru Marius OBRETIN, Andreea Alina CORNEA, FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS , Applied Computer Science: Vol. 20 No. 1 (2024)
You may also start an advanced similarity search for this article.