A SURVEY OF AI IMAGING TECHNIQUES FOR COVID-19 DIAGNOSIS AND PROGNOSIS
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
The Coronavirus Disease 2019 (COVID-19) has caused massive infections and death toll. Radiological imaging in chest such as computed tomography (CT) has been instrumental in the diagnosis and evaluation of the lung infection which is the common indication in COVID-19 infected patients. The technological advances in artificial intelligence (AI) furthermore increase the performance of imaging tools and support health professionals. CT, Positron Emission Tomography – CT (PET/CT), X-ray, Magnetic Resonance Imaging (MRI), and Lung Ultrasound (LUS) are used for diagnosis, treatment of COVID-19. Applying AI on image acquisition will help automate the process of scanning and providing protection to lab technicians. AI empowered models help radiologists and health experts in making better clinical decisions. We review AI-empowered medical imaging characteristics, image acquisition, computer-aided models that help in the COVID-19 diagnosis, management, and follow-up. Much emphasis is on CT and X-ray with integrated AI, as they are first choice in many hospitals.
Keywords:
References
Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & Xia, L. (2020). Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 2019, 200642. https://doi.org/10.1148/radiol.2020200642 DOI: https://doi.org/10.1148/radiol.2020200642
Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012 DOI: https://doi.org/10.1016/j.inffus.2019.12.012
Bai, H.X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J.W., Tran, T.M.L., Pan, I., Shi, L.-B., Wang, D.-C., Mei, J., Jiang, X.-L., Zeng, Q.-H., Egglin, T.K., Hu, P.-F., Agarwal, S., Xie, F.-F., Li, S., Healey, T., Atalay, M.K., & Liao, W.-H. (2020). Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology, 1, 1–13. https://doi.org/10.1148/radiol.2020200823 DOI: https://doi.org/10.1148/radiol.2020200823
Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z.A., Zhang, N., Diao, K., Lin, B., Zhu, X., Li, K., Li, S., Shan, H., Jacobi, A., & Chung, M. (2020). Chest CT findings in coronavirus disease 2019 (COVID-19): Relationship to duration of infection. Radiology, 295(3), 685–691. https://doi.org/10.1148/radiol.2020200463 DOI: https://doi.org/10.1148/radiol.2020200463
Booij, R., Budde, R.P.J., Dijkshoorn, M.L., & van Straten, M. (2019). Accuracy of automated patient positioning in CT using a 3D camera for body contour detection. European Radiology, 29(4), 2079–2088. https://doi.org/10.1007/s00330-018-5745-z DOI: https://doi.org/10.1007/s00330-018-5745-z
Castellano, G., Bonilha, L., Li, L.M., & Cendes, F. (2004). Texture analysis of medical images. Clinical Radiology, 59(12), 1061–1069. https://doi.org/10.1016/j.crad.2004.07.008 DOI: https://doi.org/10.1016/j.crad.2004.07.008
Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., Hu, S., Wang, Y., Hu, X., Zheng, B., Zhang, K., Wu, H., Dong, Z., Xu, Y., Zhu, Y., Chen, X., Yu, L., & Yu, H. (2020). Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv. https://doi.org/10.1101/2020.02.25.20021568 DOI: https://doi.org/10.1101/2020.02.25.20021568
Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2009). Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 296(2), 1–30. https://doi.org/10.1148/radiol.2020200432 DOI: https://doi.org/10.1148/radiol.2020200432
Ghoshal, B., & Tucker, A. (2020). Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection. http://arxiv.org/abs/2003.10769
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, Ch., He, J., Liu, L., Shan, H., Lei, Ch., Hui, D.S.C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., Li, S., Wang, J., Liang, Z., Peng, Y., Wei, L., Liu, Y., Hu, Y., Peng, P., Wang, J., Liu, J., Chen, Z., Li, G., Zheng, Z., Qiu, S., Luo, J., Ye, Ch., Zhu, S., & Zhong, N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The Journal of Emergency Medicine, 382, 1708-1720. https://doi.org/10.1056/NEJMoa2002032 DOI: https://doi.org/10.1056/NEJMoa2002032
He, K., Zhang, X., Ren, S., & Sun, J. (2006). Deep Residual Learning for Image Recognition. https://arxiv.org/abs/1512.03385
Jin, C., Chen, W., Cao, Y., Xu, Z., Zhang, X., Deng, L., Zheng, C., Zhou, J., Shi, H., & Feng, J. (2020). Development and Evaluation of an AI System for COVID-19 Diagnosis. MedRxiv. https://doi.org/10.1101/2020.03.20.20039834 DOI: https://doi.org/10.1101/2020.03.20.20039834
Jin, S., Wang, B., Xu, H., Luo, C., Wei, L., Zhao, W., Hou, X., Ma, W., Xu, Z., Zheng, Z., Sun, W., Lan, L., Zhang, W., Mu, X., Shi, C., Wang, Z., Lee, J., Jin, Z., Lin, M., Jin, H., Zhang, L., Guo, J., Zhao, B., Ren, Z., Wang, S., You, Z., Dong, J., Wang, X., Wang, J., & Xu, W. (2020). AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. MedRxiv. https://doi.org/10.1101/2020.03.19.20039354 DOI: https://doi.org/10.1101/2020.03.19.20039354
Liszewski, M.C., Görkem, S., Sodhi, K.S., & Lee, E.Y. (2017). Lung magnetic resonance imaging for pneumonia in children. Pediatric Radiology, 47(11), 1420–1430. https://doi.org/10.1007/s00247-017-3865-2 DOI: https://doi.org/10.1007/s00247-017-3865-2
Liu, X., Guo, S., Yang, B., Ma, S., Zhang, H., Li, J., Sun, C., Jin, L., Li, X., Yang, Q., & Fu, Y. (2018). Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks. Journal of Digital Imaging, 31(5), 748–760. https://doi.org/10.1007/s10278-018-0052-4 DOI: https://doi.org/10.1007/s10278-018-0052-4
Maddah, E., & Beigzadeh, B. (2020). Use of a smartphone thermometer to monitor thermal conductivity changes in diabetic foot ulcers: A pilot study. Journal of Wound Care, 29(1), 61–66.
https://doi.org/10.12968/jowc.2020.29.1.61 DOI: https://doi.org/10.12968/jowc.2020.29.1.61
Marinari, L.A., Danny, M.A., & Miller, W.T. (2019). Sporadic coronavirus lower respiratory tract infection in adults: chest CT imaging features and comparison with other viruses. European Respiratory Journal, 54(suppl 63), PA4547. https://doi.org/10.1183/13993003.congress-2019.PA4547 DOI: https://doi.org/10.1183/13993003.congress-2019.PA4547
Milletari, F., Navab, N., & Ahmadi, S.A. (2016). V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, 565–571. https://doi.org/10.1109/3DV.2016.79 DOI: https://doi.org/10.1109/3DV.2016.79
Moro, F., Buonsenso, D., Moruzzi, M.C., Inchingolo, R., Smargiassi, A., Demi, L., Larici, A.R., Scambia, G., Lanzone, A., & Testa, A.C. (2020). How to perform lung ultrasound in pregnant women with suspected COVID-19. Ultrasound in Obstetrics and Gynecology, 55(5), 593–598. https://doi.org/10.1002/uog.22028 DOI: https://doi.org/10.1002/uog.22028
Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks Ali. https://arxiv.org/abs/2003.10849 DOI: https://doi.org/10.1007/s10044-021-00984-y
Nemati, E., Rahman, M.M., Nathan, V., Vatanparvar, K., & Kuang, J. (2019). Poster Abstract: A Comprehensive Approach for Cough Type Detection. Proceedings - 4th IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2019 (pp. 15–16). IEEE. https://doi.org/10.1109/CHASE48038.2019.00013 DOI: https://doi.org/10.1109/CHASE48038.2019.00013
Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R.L., Yang, L., & Zheng, Ch. (2020). Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19) Pneumonia. Radiology, 295(3), 1–15. https://doi.org/https://doi.org/10.1148/radiol.2020200370 DOI: https://doi.org/10.1148/radiol.2020200370
Qi, X., Jiang, Z., Yu, Q., Shao, Ch., Zhang, H., Yue, H., Ma, B., Wang, Y., Liu, Ch., Meng, X., Huang, S., Wang, J., Xu, D., Lei, J., Xie, G., Huang, H., Yang, J., Ji, J., Pan, H., Zou, S., & Ju, S. (2001). Machine learningbased CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARSCoV-2 infection: A multicenter study. MedRxiv. https://doi.org/10.1101/2020.02.29.20029603 DOI: https://doi.org/10.1101/2020.02.29.20029603
Qin, C., Liu, F., Yen, T.C., & Lan, X. (2020). 18F-FDG PET/CT findings of COVID-19: a series of four highly suspected cases. European Journal of Nuclear Medicine and Molecular Imaging, 47(5), 1281–1286. https://doi.org/10.1007/s00259-020-04734-w DOI: https://doi.org/10.1007/s00259-020-04734-w
Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. https://doi.org/10.1016/j.imu.2020.100360 DOI: https://doi.org/10.1016/j.imu.2020.100360
Richardson, P., Griffin, I., Tucker, C., Smith, D., Oechsle, O., Phelan, A., & Stebbing, J. (2020). Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. The Lancet, 395(10223), e30–e31. https://doi.org/10.1016/S0140-6736(20)30304-4 DOI: https://doi.org/10.1016/S0140-6736(20)30304-4
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. https://arxiv.org/abs/1505.04597 DOI: https://doi.org/10.1007/978-3-319-24574-4_28
Shan, F., Gao, Y., Wang, Y., Shi, W., Shi, N., Han, M., Xue, Z., Shen, D., & Shi, Y. (2020). Lung Infection Quantification of COVID-19 in CT Images with Deep Learning. arXiv:2003.04655. https://doi.org/10.1002/mp.14609 DOI: https://doi.org/10.1002/mp.14609
Shi, F., Xia, L., Shan, F., Wu, D., Wei, Y., Yuan, H., Jiang, H., Gao, Y., Sui, H., & Shen, D. (2020). Large-Scale Screening of COVID-19 from Community Acquired Pneumonia using Infection Size-Aware Classification. http://arxiv.org/abs/2003.09860 DOI: https://doi.org/10.1088/1361-6560/abe838
Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases, 20(4), 425–434. https://doi.org/10.1016/S1473-3099(20)30086-4 DOI: https://doi.org/10.1016/S1473-3099(20)30086-4
Shi, W., Peng, X., Liu, T., Cheng, Z., Lu, H., Yang, S., Zhang, J., Li, F., Wang, M., Zhang, X., Gao, Y., Shi, Y., Zhang, Z., & Shan, F. (2020). Deep Learning-Based Quantitative Computed Tomography Model in Predicting the Severity of COVID-19: A Retrospective Study in 196 Patients. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3546089 DOI: https://doi.org/10.2139/ssrn.3546089
Singh, V., Ma, K., Tamersoy, B., Chang, Y.-J., Wimmer, A., O’Donnell, T., & Chen, T. (2017). DARWIN: Deformable Patient Avatar Representation With Deep Image Network. In M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. Collins & S. Duchesne (Eds.), Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science (vol 10434). Springer, Cham. https://doi.org/10.1007/978-3-319-66185-8_56 DOI: https://doi.org/10.1007/978-3-319-66185-8_56
Song, F., Shi, N., Shan, F., Zhang, Z., Shen, J., Lu, H., Ling, Y., Jiang, Y., & Shi, Y. (2020). Emerging 2019 novel coronavirus (2019-NCoV) pneumonia. Radiology, 295(1), 210–217. https://doi.org/10.1148/radiol.2020200274 DOI: https://doi.org/10.1148/radiol.2020200274
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585 DOI: https://doi.org/10.1001/jama.2020.1585
Wang, L., & Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. http://arxiv.org/abs/2003.09871 DOI: https://doi.org/10.1038/s41598-020-76550-z
Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., & Xu, B. (2020). A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). MedRxiv. https://doi.org/10.1101/2020.02.14.20023028 DOI: https://doi.org/10.1101/2020.02.14.20023028
Wang, Y., Hu, M., Li, Q., Zhang, X.-P., Zhai, G., & Yao, N. (2020). Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. http://arxiv.org/abs/2002.05534
WHO. (2020). WHO Corona symptoms. https://www.who.int/health-topics/coronavirus#tab=tab_3
Wong, H.Y.F., Lam, H.Y.S., Fong, A.H.-T., Leung, S.T., Chin, T.W.-Y., Lo, C.S.Y., Lui, M.M.-S., Lee, J.C.Y., Chiu, K.W.-H., Chung, T., Lee, E.Y.P., Wan, E.Y.F., Hung, F.N.I., Lam, T.P.W., Kuo, M., & Ng, M.-Y. (2016). Frequency and Distribution of Chest Radiographic Findings in COVID-19 Positive Patients. Imaging, 279(3), 849–858. https://doi.org/10.1148/radiol.2020201160 DOI: https://doi.org/10.1148/radiol.2020201160
Yan, L., Zhang, H.-T., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., Sun, C., Tang, X., Jin, L., Zhang, M., Huang, X., Xiao, Y., Cao, H., Chen, Y., Ren, T., Wang, F., Xiao, Y., Huang, S., Tan, X., Huang, N., Jiao, B., Zhang, Y., Luo, A., Mombaerts, L., Jin, J., Cao, Z., Li, S., Xu, H., & Yuan, Y. (2020). A machine learning-based model for survival prediction in patients with severe COVID-19 infection. MedRxiv. https://doi.org/10.1101/2020.02.27.20028027 DOI: https://doi.org/10.1101/2020.02.27.20028027
Yan, Q., Wang, B., Gong, D., Luo, C., Zhao, W., Shen, J., Shi, Q., Jin, S., Zhang, L., & You, Z. (2020). COVID19 Chest CT Image Segmentation – A Deep Convolutional Neural Network Solution. http://arxiv.org/abs/2004.10987
Yao, X.H., Li, T.Y., He, Z.C., Ping, Y.F., Liu, H.W., Yu, S.C., Mou, H.M., Wang, L.H., Zhang, H.R., Fu, W.J., Luo, T., Liu, F., Guo, Q.N., Chen, C., Xiao, H.L., Guo, H.T., Lin, S., Xiang, D.F., Shi, Y., Pan, G.Q., Li, Q.R., Huang, X., Cui, Y., Liu, X.Z., Tang, W., Pan, P.F., Huang, X.Q., Ding, Y.Q., & Bian, X.W. (2020). A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua bing li xue za zhi = Chinese journal of pathology, 49(5), 411–417. https://doi.org/10.3760/cma.j.cn112151-20200312-00193
Ye, Z., Zhang, Y., Wang, Y., Huang, Z., & Song, B. (2020). Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. European Radiology, 30(8), 4381-4389. https://doi.org/10.1007/s00330-020-06801-0 DOI: https://doi.org/10.1007/s00330-020-06801-0
Zhang, J., Xie, Y., Liao, Z., Pang, G., Verjans, J., Li, W., Sun, Z., He, J., Li, Y., Shen, C., & Xia, Y. (2020). COVID-19 Screening on Chest X-ray Images Using Deep Learning based Anomaly Detection. http://arxiv.org/abs/2003.12338
Zhao, D., Yao, F., Wang, L., Zheng, L., Gao, Y., Ye, J., Guo, F., Zhao, H., & Gao, R. (2020). A Comparative Study on the Clinical Features of Coronavirus 2019 (COVID-19) Pneumonia With Other Pneumonias. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 71(15), 756–761. https://doi.org/10.1093/cid/ciaa247 DOI: https://doi.org/10.1093/cid/ciaa247
Zhavoronkov, A., Aladinskiy, V., Zhebrak, A., Zagribelnyy, B., Terentiev, V., Bezrukov, D., Polykovskiy, D., Shayakhmetov, R., Filimonov, A., Orekhov, P., Yan, Y., Popova, O., Vanhaelen, Q., Aliper, A., & Ivanenkov, Y. (2020). Potential COVID-2019 3C-like Protease Inhibitors Designed Using Generative Deep Learning Approaches. ChemRxiv. https://doi.org/10.26434/chemrxiv.11829102.v2 DOI: https://doi.org/10.26434/chemrxiv.11829102
Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., & Wang, X. (2020). Deep Learning-based Detection for COVID-19 from Chest CT using Weak Label. MedRxiv. https://doi.org/10.1101/2020.03.12.20027185 DOI: https://doi.org/10.1101/2020.03.12.20027185
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (vol. 11045 LNCS, pp. 3–11). Springer, Cham. https://doi.org/10.1007/978-3-030-00889-5_1 DOI: https://doi.org/10.1007/978-3-030-00889-5_1
Article Details
Abstract views: 1187
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.