A SURVEY OF AI IMAGING TECHNIQUES FOR COVID-19 DIAGNOSIS AND PROGNOSIS
KK Praneeth Tellakula
praneeth.tkk@gmail.comBannari Amman Institute of Technology (Anna University, Department of Electronics And Communication Engineering), Sathyamangalam (India)
Saravana Kumar R
Bannari Amman Institute of Technology (Anna University, Department of Electronics And Communication Engineering), Sathyamangalam (India)
Sanjoy Deb
Bannari Amman Institute of Technology (Anna University, Department of Electronics And Communication Engineering), Sathyamangalam (India)
Abstract
The Coronavirus Disease 2019 (COVID-19) has caused massive infections and death toll. Radiological imaging in chest such as computed tomography (CT) has been instrumental in the diagnosis and evaluation of the lung infection which is the common indication in COVID-19 infected patients. The technological advances in artificial intelligence (AI) furthermore increase the performance of imaging tools and support health professionals. CT, Positron Emission Tomography – CT (PET/CT), X-ray, Magnetic Resonance Imaging (MRI), and Lung Ultrasound (LUS) are used for diagnosis, treatment of COVID-19. Applying AI on image acquisition will help automate the process of scanning and providing protection to lab technicians. AI empowered models help radiologists and health experts in making better clinical decisions. We review AI-empowered medical imaging characteristics, image acquisition, computer-aided models that help in the COVID-19 diagnosis, management, and follow-up. Much emphasis is on CT and X-ray with integrated AI, as they are first choice in many hospitals.
Keywords:
Artificial Intelligence, COVID-19, diagnosis, follow-up, prognosisReferences
Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., & Xia, L. (2020). Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology, 2019, 200642. https://doi.org/10.1148/radiol.2020200642
DOI: https://doi.org/10.1148/radiol.2020200642
Google Scholar
Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
DOI: https://doi.org/10.1016/j.inffus.2019.12.012
Google Scholar
Bai, H.X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J.W., Tran, T.M.L., Pan, I., Shi, L.-B., Wang, D.-C., Mei, J., Jiang, X.-L., Zeng, Q.-H., Egglin, T.K., Hu, P.-F., Agarwal, S., Xie, F.-F., Li, S., Healey, T., Atalay, M.K., & Liao, W.-H. (2020). Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology, 1, 1–13. https://doi.org/10.1148/radiol.2020200823
DOI: https://doi.org/10.1148/radiol.2020200823
Google Scholar
Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z.A., Zhang, N., Diao, K., Lin, B., Zhu, X., Li, K., Li, S., Shan, H., Jacobi, A., & Chung, M. (2020). Chest CT findings in coronavirus disease 2019 (COVID-19): Relationship to duration of infection. Radiology, 295(3), 685–691. https://doi.org/10.1148/radiol.2020200463
DOI: https://doi.org/10.1148/radiol.2020200463
Google Scholar
Booij, R., Budde, R.P.J., Dijkshoorn, M.L., & van Straten, M. (2019). Accuracy of automated patient positioning in CT using a 3D camera for body contour detection. European Radiology, 29(4), 2079–2088. https://doi.org/10.1007/s00330-018-5745-z
DOI: https://doi.org/10.1007/s00330-018-5745-z
Google Scholar
Castellano, G., Bonilha, L., Li, L.M., & Cendes, F. (2004). Texture analysis of medical images. Clinical Radiology, 59(12), 1061–1069. https://doi.org/10.1016/j.crad.2004.07.008
DOI: https://doi.org/10.1016/j.crad.2004.07.008
Google Scholar
Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., Hu, S., Wang, Y., Hu, X., Zheng, B., Zhang, K., Wu, H., Dong, Z., Xu, Y., Zhu, Y., Chen, X., Yu, L., & Yu, H. (2020). Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv. https://doi.org/10.1101/2020.02.25.20021568
DOI: https://doi.org/10.1101/2020.02.25.20021568
Google Scholar
Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., & Ji, W. (2009). Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 296(2), 1–30. https://doi.org/10.1148/radiol.2020200432
DOI: https://doi.org/10.1148/radiol.2020200432
Google Scholar
Ghoshal, B., & Tucker, A. (2020). Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection. http://arxiv.org/abs/2003.10769
Google Scholar
Guan, W., Ni, Z., Hu, Y., Liang, W., Ou, Ch., He, J., Liu, L., Shan, H., Lei, Ch., Hui, D.S.C., Du, B., Li, L., Zeng, G., Yuen, K.-Y., Chen, R., Tang, C., Wang, T., Chen, P., Xiang, J., Li, S., Wang, J., Liang, Z., Peng, Y., Wei, L., Liu, Y., Hu, Y., Peng, P., Wang, J., Liu, J., Chen, Z., Li, G., Zheng, Z., Qiu, S., Luo, J., Ye, Ch., Zhu, S., & Zhong, N. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The Journal of Emergency Medicine, 382, 1708-1720. https://doi.org/10.1056/NEJMoa2002032
DOI: https://doi.org/10.1056/NEJMoa2002032
Google Scholar
He, K., Zhang, X., Ren, S., & Sun, J. (2006). Deep Residual Learning for Image Recognition. https://arxiv.org/abs/1512.03385
Google Scholar
Jin, C., Chen, W., Cao, Y., Xu, Z., Zhang, X., Deng, L., Zheng, C., Zhou, J., Shi, H., & Feng, J. (2020). Development and Evaluation of an AI System for COVID-19 Diagnosis. MedRxiv. https://doi.org/10.1101/2020.03.20.20039834
DOI: https://doi.org/10.1101/2020.03.20.20039834
Google Scholar
Jin, S., Wang, B., Xu, H., Luo, C., Wei, L., Zhao, W., Hou, X., Ma, W., Xu, Z., Zheng, Z., Sun, W., Lan, L., Zhang, W., Mu, X., Shi, C., Wang, Z., Lee, J., Jin, Z., Lin, M., Jin, H., Zhang, L., Guo, J., Zhao, B., Ren, Z., Wang, S., You, Z., Dong, J., Wang, X., Wang, J., & Xu, W. (2020). AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. MedRxiv. https://doi.org/10.1101/2020.03.19.20039354
DOI: https://doi.org/10.1101/2020.03.19.20039354
Google Scholar
Liszewski, M.C., Görkem, S., Sodhi, K.S., & Lee, E.Y. (2017). Lung magnetic resonance imaging for pneumonia in children. Pediatric Radiology, 47(11), 1420–1430. https://doi.org/10.1007/s00247-017-3865-2
DOI: https://doi.org/10.1007/s00247-017-3865-2
Google Scholar
Liu, X., Guo, S., Yang, B., Ma, S., Zhang, H., Li, J., Sun, C., Jin, L., Li, X., Yang, Q., & Fu, Y. (2018). Automatic Organ Segmentation for CT Scans Based on Super-Pixel and Convolutional Neural Networks. Journal of Digital Imaging, 31(5), 748–760. https://doi.org/10.1007/s10278-018-0052-4
DOI: https://doi.org/10.1007/s10278-018-0052-4
Google Scholar
Maddah, E., & Beigzadeh, B. (2020). Use of a smartphone thermometer to monitor thermal conductivity changes in diabetic foot ulcers: A pilot study. Journal of Wound Care, 29(1), 61–66.
Google Scholar
https://doi.org/10.12968/jowc.2020.29.1.61
DOI: https://doi.org/10.12968/jowc.2020.29.1.61
Google Scholar
Marinari, L.A., Danny, M.A., & Miller, W.T. (2019). Sporadic coronavirus lower respiratory tract infection in adults: chest CT imaging features and comparison with other viruses. European Respiratory Journal, 54(suppl 63), PA4547. https://doi.org/10.1183/13993003.congress-2019.PA4547
DOI: https://doi.org/10.1183/13993003.congress-2019.PA4547
Google Scholar
Milletari, F., Navab, N., & Ahmadi, S.A. (2016). V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, 565–571. https://doi.org/10.1109/3DV.2016.79
DOI: https://doi.org/10.1109/3DV.2016.79
Google Scholar
Moro, F., Buonsenso, D., Moruzzi, M.C., Inchingolo, R., Smargiassi, A., Demi, L., Larici, A.R., Scambia, G., Lanzone, A., & Testa, A.C. (2020). How to perform lung ultrasound in pregnant women with suspected COVID-19. Ultrasound in Obstetrics and Gynecology, 55(5), 593–598. https://doi.org/10.1002/uog.22028
DOI: https://doi.org/10.1002/uog.22028
Google Scholar
Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks Ali. https://arxiv.org/abs/2003.10849
DOI: https://doi.org/10.1007/s10044-021-00984-y
Google Scholar
Nemati, E., Rahman, M.M., Nathan, V., Vatanparvar, K., & Kuang, J. (2019). Poster Abstract: A Comprehensive Approach for Cough Type Detection. Proceedings - 4th IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2019 (pp. 15–16). IEEE. https://doi.org/10.1109/CHASE48038.2019.00013
DOI: https://doi.org/10.1109/CHASE48038.2019.00013
Google Scholar
Pan, F., Ye, T., Sun, P., Gui, S., Liang, B., Li, L., Zheng, D., Wang, J., Hesketh, R.L., Yang, L., & Zheng, Ch. (2020). Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19) Pneumonia. Radiology, 295(3), 1–15. https://doi.org/https://doi.org/10.1148/radiol.2020200370
DOI: https://doi.org/10.1148/radiol.2020200370
Google Scholar
Qi, X., Jiang, Z., Yu, Q., Shao, Ch., Zhang, H., Yue, H., Ma, B., Wang, Y., Liu, Ch., Meng, X., Huang, S., Wang, J., Xu, D., Lei, J., Xie, G., Huang, H., Yang, J., Ji, J., Pan, H., Zou, S., & Ju, S. (2001). Machine learningbased CT radiomics model for predicting hospital stay in patients with pneumonia associated with SARSCoV-2 infection: A multicenter study. MedRxiv. https://doi.org/10.1101/2020.02.29.20029603
DOI: https://doi.org/10.1101/2020.02.29.20029603
Google Scholar
Qin, C., Liu, F., Yen, T.C., & Lan, X. (2020). 18F-FDG PET/CT findings of COVID-19: a series of four highly suspected cases. European Journal of Nuclear Medicine and Molecular Imaging, 47(5), 1281–1286. https://doi.org/10.1007/s00259-020-04734-w
DOI: https://doi.org/10.1007/s00259-020-04734-w
Google Scholar
Rahimzadeh, M., & Attar, A. (2020). A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked, 19, 100360. https://doi.org/10.1016/j.imu.2020.100360
DOI: https://doi.org/10.1016/j.imu.2020.100360
Google Scholar
Richardson, P., Griffin, I., Tucker, C., Smith, D., Oechsle, O., Phelan, A., & Stebbing, J. (2020). Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. The Lancet, 395(10223), e30–e31. https://doi.org/10.1016/S0140-6736(20)30304-4
DOI: https://doi.org/10.1016/S0140-6736(20)30304-4
Google Scholar
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. https://arxiv.org/abs/1505.04597
DOI: https://doi.org/10.1007/978-3-319-24574-4_28
Google Scholar
Shan, F., Gao, Y., Wang, Y., Shi, W., Shi, N., Han, M., Xue, Z., Shen, D., & Shi, Y. (2020). Lung Infection Quantification of COVID-19 in CT Images with Deep Learning. arXiv:2003.04655. https://doi.org/10.1002/mp.14609
DOI: https://doi.org/10.1002/mp.14609
Google Scholar
Shi, F., Xia, L., Shan, F., Wu, D., Wei, Y., Yuan, H., Jiang, H., Gao, Y., Sui, H., & Shen, D. (2020). Large-Scale Screening of COVID-19 from Community Acquired Pneumonia using Infection Size-Aware Classification. http://arxiv.org/abs/2003.09860
DOI: https://doi.org/10.1088/1361-6560/abe838
Google Scholar
Shi, H., Han, X., Jiang, N., Cao, Y., Alwalid, O., Gu, J., Fan, Y., & Zheng, C. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases, 20(4), 425–434. https://doi.org/10.1016/S1473-3099(20)30086-4
DOI: https://doi.org/10.1016/S1473-3099(20)30086-4
Google Scholar
Shi, W., Peng, X., Liu, T., Cheng, Z., Lu, H., Yang, S., Zhang, J., Li, F., Wang, M., Zhang, X., Gao, Y., Shi, Y., Zhang, Z., & Shan, F. (2020). Deep Learning-Based Quantitative Computed Tomography Model in Predicting the Severity of COVID-19: A Retrospective Study in 196 Patients. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3546089
DOI: https://doi.org/10.2139/ssrn.3546089
Google Scholar
Singh, V., Ma, K., Tamersoy, B., Chang, Y.-J., Wimmer, A., O’Donnell, T., & Chen, T. (2017). DARWIN: Deformable Patient Avatar Representation With Deep Image Network. In M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. Collins & S. Duchesne (Eds.), Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science (vol 10434). Springer, Cham. https://doi.org/10.1007/978-3-319-66185-8_56
DOI: https://doi.org/10.1007/978-3-319-66185-8_56
Google Scholar
Song, F., Shi, N., Shan, F., Zhang, Z., Shen, J., Lu, H., Ling, Y., Jiang, Y., & Shi, Y. (2020). Emerging 2019 novel coronavirus (2019-NCoV) pneumonia. Radiology, 295(1), 210–217. https://doi.org/10.1148/radiol.2020200274
DOI: https://doi.org/10.1148/radiol.2020200274
Google Scholar
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
DOI: https://doi.org/10.1001/jama.2020.1585
Google Scholar
Wang, L., & Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. http://arxiv.org/abs/2003.09871
DOI: https://doi.org/10.1038/s41598-020-76550-z
Google Scholar
Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., & Xu, B. (2020). A deep learning algorithm using CT images to screen for corona virus disease (COVID-19). MedRxiv. https://doi.org/10.1101/2020.02.14.20023028
DOI: https://doi.org/10.1101/2020.02.14.20023028
Google Scholar
Wang, Y., Hu, M., Li, Q., Zhang, X.-P., Zhai, G., & Yao, N. (2020). Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. http://arxiv.org/abs/2002.05534
Google Scholar
WHO. (2020). WHO Corona symptoms. https://www.who.int/health-topics/coronavirus#tab=tab_3
Google Scholar
Wong, H.Y.F., Lam, H.Y.S., Fong, A.H.-T., Leung, S.T., Chin, T.W.-Y., Lo, C.S.Y., Lui, M.M.-S., Lee, J.C.Y., Chiu, K.W.-H., Chung, T., Lee, E.Y.P., Wan, E.Y.F., Hung, F.N.I., Lam, T.P.W., Kuo, M., & Ng, M.-Y. (2016). Frequency and Distribution of Chest Radiographic Findings in COVID-19 Positive Patients. Imaging, 279(3), 849–858. https://doi.org/10.1148/radiol.2020201160
DOI: https://doi.org/10.1148/radiol.2020201160
Google Scholar
Yan, L., Zhang, H.-T., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., Sun, C., Tang, X., Jin, L., Zhang, M., Huang, X., Xiao, Y., Cao, H., Chen, Y., Ren, T., Wang, F., Xiao, Y., Huang, S., Tan, X., Huang, N., Jiao, B., Zhang, Y., Luo, A., Mombaerts, L., Jin, J., Cao, Z., Li, S., Xu, H., & Yuan, Y. (2020). A machine learning-based model for survival prediction in patients with severe COVID-19 infection. MedRxiv. https://doi.org/10.1101/2020.02.27.20028027
DOI: https://doi.org/10.1101/2020.02.27.20028027
Google Scholar
Yan, Q., Wang, B., Gong, D., Luo, C., Zhao, W., Shen, J., Shi, Q., Jin, S., Zhang, L., & You, Z. (2020). COVID19 Chest CT Image Segmentation – A Deep Convolutional Neural Network Solution. http://arxiv.org/abs/2004.10987
Google Scholar
Yao, X.H., Li, T.Y., He, Z.C., Ping, Y.F., Liu, H.W., Yu, S.C., Mou, H.M., Wang, L.H., Zhang, H.R., Fu, W.J., Luo, T., Liu, F., Guo, Q.N., Chen, C., Xiao, H.L., Guo, H.T., Lin, S., Xiang, D.F., Shi, Y., Pan, G.Q., Li, Q.R., Huang, X., Cui, Y., Liu, X.Z., Tang, W., Pan, P.F., Huang, X.Q., Ding, Y.Q., & Bian, X.W. (2020). A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua bing li xue za zhi = Chinese journal of pathology, 49(5), 411–417. https://doi.org/10.3760/cma.j.cn112151-20200312-00193
Google Scholar
Ye, Z., Zhang, Y., Wang, Y., Huang, Z., & Song, B. (2020). Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. European Radiology, 30(8), 4381-4389. https://doi.org/10.1007/s00330-020-06801-0
DOI: https://doi.org/10.1007/s00330-020-06801-0
Google Scholar
Zhang, J., Xie, Y., Liao, Z., Pang, G., Verjans, J., Li, W., Sun, Z., He, J., Li, Y., Shen, C., & Xia, Y. (2020). COVID-19 Screening on Chest X-ray Images Using Deep Learning based Anomaly Detection. http://arxiv.org/abs/2003.12338
Google Scholar
Zhao, D., Yao, F., Wang, L., Zheng, L., Gao, Y., Ye, J., Guo, F., Zhao, H., & Gao, R. (2020). A Comparative Study on the Clinical Features of Coronavirus 2019 (COVID-19) Pneumonia With Other Pneumonias. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 71(15), 756–761. https://doi.org/10.1093/cid/ciaa247
DOI: https://doi.org/10.1093/cid/ciaa247
Google Scholar
Zhavoronkov, A., Aladinskiy, V., Zhebrak, A., Zagribelnyy, B., Terentiev, V., Bezrukov, D., Polykovskiy, D., Shayakhmetov, R., Filimonov, A., Orekhov, P., Yan, Y., Popova, O., Vanhaelen, Q., Aliper, A., & Ivanenkov, Y. (2020). Potential COVID-2019 3C-like Protease Inhibitors Designed Using Generative Deep Learning Approaches. ChemRxiv. https://doi.org/10.26434/chemrxiv.11829102.v2
DOI: https://doi.org/10.26434/chemrxiv.11829102
Google Scholar
Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., & Wang, X. (2020). Deep Learning-based Detection for COVID-19 from Chest CT using Weak Label. MedRxiv. https://doi.org/10.1101/2020.03.12.20027185
DOI: https://doi.org/10.1101/2020.03.12.20027185
Google Scholar
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-net architecture for medical image segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (vol. 11045 LNCS, pp. 3–11). Springer, Cham. https://doi.org/10.1007/978-3-030-00889-5_1
DOI: https://doi.org/10.1007/978-3-030-00889-5_1
Google Scholar
Authors
KK Praneeth Tellakulapraneeth.tkk@gmail.com
Bannari Amman Institute of Technology (Anna University, Department of Electronics And Communication Engineering), Sathyamangalam India
Authors
Saravana Kumar RBannari Amman Institute of Technology (Anna University, Department of Electronics And Communication Engineering), Sathyamangalam India
Authors
Sanjoy DebBannari Amman Institute of Technology (Anna University, Department of Electronics And Communication Engineering), Sathyamangalam India
Statistics
Abstract views: 1144PDF downloads: 28
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ, EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Loubna BOUHSAIEN, Abdellah AZMANI, THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT , Applied Computer Science: Vol. 20 No. 3 (2024)
- Mahmoud BAKR, Sayed ABDEL-GABER, Mona NASR, Maryam HAZMAN, TOMATO DISEASE DETECTION MODEL BASED ON DENSENET AND TRANSFER LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Miguel Angel BELLO RIVERA, Carlos Alberto REYES GARCÍA, Tania Cristal TALAVERA ROJAS, Perfecto Malaquías QUINTERO FLORES, Rodolfo Eleazar PÉREZ LOAIZA, AUTOMATIC IDENTIFICATION OF DYSPHONIAS USING MACHINE LEARNING ALGORITHMS , Applied Computer Science: Vol. 19 No. 4 (2023)
- Nawazish NAVEED, Hayan T. MADHLOOM, Mohd Shahid HUSAIN, BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 17 No. 3 (2021)
- Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN, EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT , Applied Computer Science: Vol. 20 No. 2 (2024)
- Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK, Anna MACHROWSKA, Marcin MACIEJEWSKI, COMPARISON OF SELECTED CLASSIFICATION METHODS BASED ON MACHINE LEARNING AS A DIAGNOSTIC TOOL FOR KNEE JOINT CARTILAGE DAMAGE BASED ON GENERATED VIBROACOUSTIC PROCESSES , Applied Computer Science: Vol. 19 No. 4 (2023)
- Robert KARPIŃSKI, KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING , Applied Computer Science: Vol. 18 No. 2 (2022)
- Anna MACHROWSKA, Robert KARPIŃSKI, Marcin MACIEJEWSKI, Józef JONAK, Przemysław KRAKOWSKI, APPLICATION OF EEMD-DFA ALGORITHMS AND ANN CLASSIFICATION FOR DETECTION OF KNEE OSTEOARTHRITIS USING VIBROARTHROGRAPHY , Applied Computer Science: Vol. 20 No. 2 (2024)
- Wojciech DANILCZUK, Arkadiusz GOLA, COMPUTER-AIDED MATERIAL DEMAND PLANNING USING ERP SYSTEMS AND BUSINESS INTELLIGENCE TECHNOLOGY , Applied Computer Science: Vol. 16 No. 3 (2020)
You may also start an advanced similarity search for this article.