Addeh, A., Demirel, H., & Zarbakhsh, P. (2017). Early detection of breast cancer using optimized ANFIS and features selection. 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN) (pp. 39–42). IEEE. http://doi.org/10.1109/CICN.2017.8319352
DOI: https://doi.org/10.1109/CICN.2017.8319352
Agrawal, S., & Agrawal, J. (2015). Neural network techniques for cancer prediction: A survey. Procedia Computer Science, 60, 769–774. http://doi.org/10.1016/j.procs.2015.08.234
DOI: https://doi.org/10.1016/j.procs.2015.08.234
Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A. (2015). Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM transactions on computational biology and bioinformatics, 13(5), 971–989. http://doi.org/10.1109/TCBB.2015.2478454
DOI: https://doi.org/10.1109/TCBB.2015.2478454
Barna, S. D., & Khan, S. (2019). Performance Evaluation of Classification Learning Models for Wisconsin Breast Cancer Data Repository. 7th International Conference on Data Science and SDGs: Challenges, Opportunities and Realities (EC-50). Bangladesh.
Bonakdari, H., Moradi, F., Ebtehaj, I., Gharabaghi, B., Sattar, A. A., Azimi, A. H., & Radecki-Pawlik, A. (2020). A Non-Tuned Machine Learning Technique for Abutment Scour Depth in Clear Water Condition. Water, 12(1), 301. http://doi.org/10.3390/w12010301
DOI: https://doi.org/10.3390/w12010301
Casaubon, J. T., Tomlinson-Hansen, S., & Regan, J.-P. (2020). Fine Needle Aspiration of Breast Masses. StatPearls. StatPearls Publishing.
Dhungel, N., Carneiro, G., & Bradley, A. P. (2015). Automated Mass Detection in Mammograms Using Cascaded Deep Learning and Random Forests. International Conference on Digital Image Computing: Techniques and Applications (DICTA) (pp. 1–8). IEEE. http://doi.org/10.1109/DICTA.2015.7371234
DOI: https://doi.org/10.1109/DICTA.2015.7371234
Douangnoulack, P., & Boonjing, V. (2018). Building Minimal Classification Rules for Breast Cancer Diagnosis. 2018 10th International Conference on Knowledge and Smart Technology (KST) (pp. 278–281). IEEE. http://doi.org/10.1109/KST.2018.8426198
DOI: https://doi.org/10.1109/KST.2018.8426198
Ed-Daoudy, A., & Maalmi, K. (2020). Breast cancer classification with reduced feature set using association rules and support vector machine. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 34. http://doi.org/10.1007/s13721-020-00237-8
DOI: https://doi.org/10.1007/s13721-020-00237-8
Foithong, S., Srinil, P., & Pinngern, O. (2017). Min-Uncertainty & Max-Certainty Criteria of Neighborhood Rough-Mutual Feature Selection. Walailak Journal of Science and Technology, 14(4).
Guliyev, N. J., & Ismailov, V. E. (2018). On the approximation by single hidden layer feedforward neural networks with fixed weights. Neural Networks, 98, 296-304. http://doi.org/10.1016/j.neunet.2017.12.007
DOI: https://doi.org/10.1016/j.neunet.2017.12.007
Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2008). Feature extraction: foundations and applications (Vol. 207). Springer. http://doi.org/10.1007/978-3-540-35488-8
DOI: https://doi.org/10.1007/978-3-540-35488-8
Hsu, Y.-C., Tsai, Y.-H., Weng, H.-H., Hsu, L.-S., Tsai, Y.-H., Lin, Y.-C., Hung, M.-S., Fang, Y.-H., & Chen, C.-W. (2020). Artificial neural networks improve LDCT lung cancer screening: a comparative validation study. BMC Cancer, 20(1), 1023. https://doi.org/10.1186/s12885-020-07465-1
DOI: https://doi.org/10.1186/s12885-020-07465-1
Islam, M. M., Haque, M. R., Iqbal, H., Hasan, M. M., Hasan, M., & Kabir, M. N. (2020). Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques. SN Computer Science, 1(5), 290. https://doi.org/10.1007/s42979-020-00305-w
DOI: https://doi.org/10.1007/s42979-020-00305-w
Jain, D., & Singh, V. (2018). Feature selection and classification systems for chronic disease prediction: A review. Egyptian Informatics Journal, 19(3), 179–189. https://doi.org/10.1016/j.eij.2018.03.002
DOI: https://doi.org/10.1016/j.eij.2018.03.002
Khan, A., Shah, R., Imran, M., Khan, A., Bangash, J. I., & Shah, K. (2019). An alternative approach to neural network training based on hybrid bio meta-heuristic algorithm. Journal of Ambient Intelligence and Humanized Computing, 10(10), 3821-3830. https://doi.org/10.1007/s12652-019-01373-4
DOI: https://doi.org/10.1007/s12652-019-01373-4
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1–2), 273–324. https://doi.org/10.1016/S0004-3702(97)00043-X
DOI: https://doi.org/10.1016/S0004-3702(97)00043-X
Kumar, V. (2021). Evaluation of computationally intelligent techniques for breast cancer diagnosis. Neural Computing and Applications, 33(8), 3195–3208. https://doi.org/10.1007/s00521-020-05204-y
DOI: https://doi.org/10.1007/s00521-020-05204-y
Kumar, V., & Minz, S. (2014). Feature selection: a literature review. SmartCR, 4(3), 211-229.
DOI: https://doi.org/10.6029/smartcr.2014.03.007
Kumari, M., & Singh, V. (2018). Breast Cancer Prediction system. Procedia Computer Science, 132, 371–376. https://doi.org/10.1016/j.procs.2018.05.197
DOI: https://doi.org/10.1016/j.procs.2018.05.197
Liu, X., Li, B., Shen, D., Cao, J., & Mao, B. (2017). Analysis of Grain Storage Loss Based on Decision Tree Algorithm. Procedia Computer Science, 122, 130–137. https://doi.org/10.1016/j.procs.2017.11.351
DOI: https://doi.org/10.1016/j.procs.2017.11.351
Moodley, J., Walter, F., Scott, S., & Mwaka, A. (2018). Towards timely diagnosis of symptomatic breast and cervical cancer in South Africa. South African Medical Journal, 108(10), 803–804. https://doi.org/10.7196/SAMJ.2018.v108i10.13478
DOI: https://doi.org/10.7196/SAMJ.2018.v108i10.13478
Mushtaq, Z., Yaqub, A., Hassan, A., & Su, S. F. (2019). Performance Analysis of Supervised Classifiers Using PCA Based Techniques on Breast Cancer. 2019 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–6). IEEE. https://doi.org/10.1109/CEET1.2019.8711868
DOI: https://doi.org/10.1109/CEET1.2019.8711868
Patsadu, O., Tangchitwilaikun, P., & Lowsuwankul, S. (2021). Liver Cancer Patient Classification on a Multiple-Stage using Hybrid Classification Methods. Walailak Journal of Science and Technology, 18(10). https://doi.org/10.48048/wjst.2021.9169
DOI: https://doi.org/10.48048/wjst.2021.9169
Santos-Pereira, J., Gruenwald, L., & Bernardino, J. (2021). Top data mining tools for the healthcare industry. Journal of King Saud University – Computer and Information Sciences, in press. https://doi.org/https://doi.org/10.1016/j.jksuci.2021.06.002
DOI: https://doi.org/10.1016/j.jksuci.2021.06.002
Senturk, Z. K., & Kara, R. (2014). Breast Cancer Diagnosis Via Data Mining: Performance Analysis of Seven Different algorithms. Computer Science & Engineering: An International Journal (CSEIJ), 4(1), 35–46. https://doi.org/10.5121/cseij.2014.4104
DOI: https://doi.org/10.5121/cseij.2014.4104
Shenouda, E. A. M. A. (2006). A Quantitative Comparison of Different MLP Activation Functions in Classification. In: J. Wang, Z. Yi, J. M. Zurada, B. L. Lu & H. Yin (Eds.), Advances in Neural Networks. Lecture Notes in Computer Science (vol. 3971). Springer. https://doi.org/10.1007/11759966_125
DOI: https://doi.org/10.1007/11759966_125
Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. In Data classification: Algorithms and applications (chapter 2). Chapman and Hall/CRC. https://doi.org/10.1201/b17320
DOI: https://doi.org/10.1201/b17320
Vijayalakshmi, S., & Priyadarshini, J. (2017). Breast Cancer Classification using RBF and BPN Neural Networks. International Journal of Applied Engineering Research, 12(15), 4775–4781.
Wahhab, H. T. A. (2015). Classification of acute leukemia using image processing and machine learning techniques. University of Malaya.
WBCD. (1995). Retrieved January 20, 2021 from https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).
Wu, J., Zhuang, Q., & Tan, Y. (2020). Auxiliary Medical Decision System for Prostate Cancer Based on Ensemble Method. Computational and Mathematical Methods in Medicine, 2020, 6509596. https://doi.org/10.1155/2020/6509596
DOI: https://doi.org/10.1155/2020/6509596
Yi, L., & Yi, W. (2017). Decision Tree Model in the Diagnosis of Breast Cancer. In 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC) (pp. 176–179). IEEE. https://doi.org/10.1109/ICCTEC.2017.00046
DOI: https://doi.org/10.1109/ICCTEC.2017.00046
Zarei, M., Ansari, H., Keshavarz, P., & Zerafat, M. (2020). Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. Journal of Thermal Analysis and Calorimetry, 139(6), 3757–3768.
DOI: https://doi.org/10.1007/s10973-019-08746-z