RGB-D FACE RECOGNITION USING LBP-DCT ALGORITHM
Article Sidebar
Open full text
Issue Vol. 17 No. 3 (2021)
-
PERFORMANCE ENHANCEMENT OF CUDA APPLICATIONS BY OVERLAPPING DATA TRANSFER AND KERNEL EXECUTION
K. Raju, Niranjan N Chiplunkar5-18
-
BREAST CANCER DIAGNOSIS USING WRAPPER-BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORK
Nawazish NAVEED, Hayan T. MADHLOOM, Mohd Shahid HUSAIN19-30
-
APPLICATION OF A FUZZY CONTROLLER IN THE PROCESS OF AUTOMATED POLYETHYLENE FILM THICKNESS CONTROL
Andrzej Jardzioch, Wioletta Marczak31-46
-
OPTIMAL SLIDING MODE CONTROLLER DESIGN BASED ON WHALE OPTIMIZATION ALGORITHM FOR LOWER LIMB REHABILITATION ROBOT
Noor SABAH, Ekhlas HAMEED, Muayed S AL-HUSEINY47-59
-
BACKWARD MOTION PLANNING AND CONTROL OF MULTIPLE MOBILE ROBOTS MOVING IN TIGHTLY COUPLED FORMATIONS
Kuppan Chetty RAMANATHAN, Manju MOHAN, Joshuva AROCKIA DHANRAJ60-72
-
RGB-D FACE RECOGNITION USING LBP-DCT ALGORITHM
Sunil Kumar B L, Sharmila Kumari M73-81
-
IMPLEMENTATION OF DYNAMIC AND FAST MINING ALGORITHMS ON INCREMENTAL DATASETS TO DISCOVER QUALITATIVE RULES
Pannangi Naresh, R. Suguna82-91
-
INNOVATIVE DEVICE FOR TENSILE STRENGTH TESTING OF WELDED JOINTS: 3D MODELLING, FEM SIMULATION AND EXPERIMENTAL VALIDATION OF TEST RIG – A CASE STUDY
Mateusz Sawa, Mirosław Szala, Weronika Henzler92-105
Archives
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
Main Article Content
DOI
Authors
Abstract
Face recognition is one of the applications in image processing that recognizes or checks an individual's identity. 2D images are used to identify the face, but the problem is that this kind of image is very sensitive to changes in lighting and various angles of view. The images captured by 3D camera and stereo camera can also be used for recognition, but fairly long processing times is needed. RGB-D images that Kinect produces are used as a new alternative approach to 3D images. Such cameras cost less and can be used in any situation and any environment. This paper shows the face recognition algorithms’ performance using RGB-D images. These algorithms calculate the descriptor which uses RGB and Depth map faces based on local binary pattern. Those images are also tested for the fusion of LBP and DCT methods. The fusion of LBP and DCT approach produces a recognition rate of 97.5% during the experiment.
Keywords:
References
Abebe, H. B., & Hwang, C. L. (2019). RGB-D face recognition using LBP with suitable feature dimension of depth image. IET Cyber-Physical Systems: Theory & Applications, 4(3), 189–197. https://doi.org/10.1049/ietcps.2018.5045 DOI: https://doi.org/10.1049/iet-cps.2018.5045
Chen, P. Z., & Chen, S. L. (2010). A new face recognition algorithm based on dct and lbp. In Quantitative Logic and Soft Computing 2010 (pp. 811–818). Springer. https://doi.org/10.1007/978-3-642-15660-1_82 DOI: https://doi.org/10.1007/978-3-642-15660-1_82
Chowdhury, A., & Vatsa, M. (2016). RGB-D face recognition in surveillance videos (Doctoral dissertation). Retrieved from https://repository.iiitd.edu.in/jspui/handle/123456789/440
Cruz, L., Lucio, D., & Velho, L. (2012). Kinect and rgbd images: Challenges and applications. In 2012 25th SIBGRAPI conference on graphics, patterns and images tutorials(pp. 36–49). IEEE. https://doi.org/10.1109/SIBGRAPIT.2012.13 DOI: https://doi.org/10.1109/SIBGRAPI-T.2012.13
Goswami, G., Vatsa, M., & Singh, R. (2014). RGB-D face recognition with texture and attribute features. IEEE Transactions on Information Forensics and Security, 9(10), 1629–1640. https://doi.org/10.1109/TIFS.2014.2343913 DOI: https://doi.org/10.1109/TIFS.2014.2343913
Han, J., Shao, L., Xu, D., & Shotton, J. (2013). Enhanced computer vision with microsoft kinect sensor: A review. IEEE transactions on cybernetics, 43(5), 1318–1334. https://doi.org/10.1109/TCYB.2013.2265378 DOI: https://doi.org/10.1109/TCYB.2013.2265378
Hg, R. I., Jasek, P., Rofidal, C., Nasrollahi, K., Moeslund, T. B., & Tranchet, G. (2012). An rgb-d database using microsoft's kinect for windows for face detection. In 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (pp. 42–46). IEEE. https://doi.org/10.1109/SITIS.2012.17 DOI: https://doi.org/10.1109/SITIS.2012.17
Hsu, G. S. J., Liu, Y. L., Peng, H. C., & Wu, P. X. (2014). RGB-D-based face reconstruction and recognition. IEEE Transactions on Information Forensics and Security, 9(12), 2110–2118. https://doi.org/10.1109/TIFS.2014.2361028 DOI: https://doi.org/10.1109/TIFS.2014.2361028
Huynh, T., Min, R., & Dugelay, J. L. (2012). An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In Asian Conference on Computer Vision (pp. 133–145). Springer. https://doi.org/10.1007/978-3-642-37410-4_12 DOI: https://doi.org/10.1007/978-3-642-37410-4_12
Lin, D., Fidler, S., & Urtasun, R. (2013). Holistic scene understanding for 3d object detection with rgbd cameras. In Proceedings of the IEEE international conference on computer vision (pp. 1417–1424). IEEE. https://doi.org/10.1109/ICCV.2013.179 DOI: https://doi.org/10.1109/ICCV.2013.179
Min, R., Kose, N., & Dugelay, J. L. (2014). Kinectfacedb: A kinect database for face recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(11), 1534–1548. https://doi.org/10.1109/TSMC.2014.2331215 DOI: https://doi.org/10.1109/TSMC.2014.2331215
Shermina, J. (2011). Illumination invariant face recognition using discrete cosine transform and principal component analysis. In 2011 International Conference on Emerging Trends in Electrical and Computer Technology (pp. 826–830). IEEE. https://doi.org/10.1109/ICETECT.2011.5760233 DOI: https://doi.org/10.1109/ICETECT.2011.5760233
Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from rgbd images. In European conference on computer vision (pp. 746-760). Springer. https://doi.org/10.1007/978-3-642-33715-4_54 DOI: https://doi.org/10.1007/978-3-642-33715-4_54
Song, K., Yan, Y., Zhao, Y., & Liu, C. (2015). Adjacent evaluation of local binary pattern for texture classification. Journal of Visual Communication and Image Representation, 33, 323–339. https://doi.org/10.1016/j.jvcir.2015.09.016 DOI: https://doi.org/10.1016/j.jvcir.2015.09.016
Wang, J., Liu, Z., Chorowski, J., Chen, Z., & Wu, Y. (2012). Robust 3d action recognition with random occupancy patterns. In European Conference on Computer Vision (pp. 872–885). Springer. https://dl.acm.org/doi/10.5555/2964398.2964463 DOI: https://doi.org/10.1007/978-3-642-33709-3_62
Yu, W., Gan, L., Yang, S., Ding, Y., Jiang, P., Wang, J., & Li, S. (2014). An improved LBP algorithm for texture and face classification. Signal, Image and Video Processing, 8(1), 155–161. https://doi.org/10.1007/s11760-014-0652-5 DOI: https://doi.org/10.1007/s11760-014-0652-5
Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM computing surveys (CSUR), 35(4), 399–458. https://doi.org/10.1145/954339.954342 DOI: https://doi.org/10.1145/954339.954342
Zohra, F. T., Rahman, M. W., & Gavrilova, M. (2016). Occlusion detection and localization from Kinect depth images. In 2016 International Conference on Cyberworlds (CW) (pp. 189–196). IEEE. https://doi.org/10.1109/CW.2016.40 DOI: https://doi.org/10.1109/CW.2016.40
Article Details
Abstract views: 398
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
