ANALYTICS AND DATA SCIENCE APPLIED TO THE TRAJECTORY OUTLIER DETECTION

Alexis J. LOPEZ

alexistegno@gmail.com
Tecnológico Nacional de México, Instituto Tecnológico de Apizaco, 90300, Carretera Apizaco-Tzompantepec, Esquina Av., Instituto Tecnologico S/N, Apizaco, Tlaxcala (Mexico)

Perfecto M. QUINTERO


Tecnológico Nacional de México, Instituto Tecnológico de Apizaco, 90300, Carretera Apizaco-Tzompantepec, Esquina Av., Instituto Tecnologico S/N, Apizaco, Tlaxcala (Mexico)

Ana K. HERNANDEZ


Tecnológico Nacional de México, Instituto Tecnológico de Apizaco, 90300, Carretera Apizaco-Tzompantepec, Esquina Av., Instituto Tecnologico S/N, Apizaco, Tlaxcala (Mexico)

Abstract

Nowadays, logistics for transportation and distribution of merchandise are a key element to increase the competitiveness of companies. However, the election of alternative routes outside the panned routes causes the logistic companies to provide a poor-quality service, with units that endanger the appropriate deliver of merchandise and impacting negatively the way in which the supply chain works. This paper aims to develop a module that allows the processing, analysis and deployment of satellite information oriented to the pattern analysis, to find anomalies in the paths of the operators by implementing the algorithm TODS, to be able to help in the decision making. The experimental results show that the algorithm detects optimally the abnormal routes using historical data as a base.


Keywords:

spatial-temporal data, trajectory outlier detection, trajectory clustering

Cao, K., Shi, L., Wang, G., Han, D., & Bai, M. (2014). Density-Based Local Outlier Detection on Uncertain Data. In: F. Li, G. Li, S.W. Hwang, B. Yao & Z. Zhang, (Eds.), Web-Age Information Management (pp. 67–71). Springer International Publishing, Cham.
DOI: https://doi.org/10.1007/978-3-319-08010-9_9   Google Scholar

Domínguez, D.R., Redondo, R.P.D., Vilas, A.F., & Khalifa, M.B. (2017). Sensing the city with Instagram: Clustering geolocated data for outlier detection. Expert Systems with Applications, 78, 319–333.
DOI: https://doi.org/10.1016/j.eswa.2017.02.018   Google Scholar

Fontes, V.C., de Alencar, L.A., Renso, C., & Bogorny, V. (2013). Discovering Trajectory Outliers between Regions of Interest. In Proceedings of XIV GEOINFO (p. 12). Campos do Jordao, Brazil.
  Google Scholar

Gan, J., & Tao, Y. (2015). DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data – SIGMOD ’15 (pp. 519–530). ACM Press, Melbourne, Victoria, Australia.
DOI: https://doi.org/10.1145/2723372.2737792   Google Scholar

Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques. Third edition. Elsevier.
  Google Scholar

Hazel, G.G. (2008). Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection. In IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1199–1211.
DOI: https://doi.org/10.1109/36.843012   Google Scholar

Lee, J.G., Han, J., & Li, X. (2008). Trajectory Outlier Detection: A Partition-and-Detect Framework. In: 2008 IEEE 24th International Conference on Data Engineering (pp. 140–149). https://doi.org/10.1109/ICDE.2008.4497422
DOI: https://doi.org/10.1109/ICDE.2008.4497422   Google Scholar

Lei, B., & Mingchao, D. (2018). A distance-based trajectory outlier detection method on maritime traffic data. In 2018 4th International Conference on Control, Automation and Robotics (ICCAR) (pp. 340–343). https://doi.org/10.1109/ICCAR.2018.8384697
DOI: https://doi.org/10.1109/ICCAR.2018.8384697   Google Scholar

Liao, T.W. (2005). Clustering of time series data—a survey. Pattern Recognition, 38(11), 1857–1874.
DOI: https://doi.org/10.1016/j.patcog.2005.01.025   Google Scholar

Liu, Z., Pi, D., & Jiang, J. (2013). Density-based trajectory outlier detection algorithm. Journal of Systems Engineering and Electronics, 24(2), 335–340.
DOI: https://doi.org/10.1109/JSEE.2013.00042   Google Scholar

Markovic, N., Sekula, P., Vander Laan, Z., Andrienko, G., & Andrienko, N. (2019). Applications of Trajectory Data From the Perspective of a Road Transportation Agency: Literature Review and Maryland Case Study. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1858–1869. https://doi.org/10.1109/TITS.2018.2843298
DOI: https://doi.org/10.1109/TITS.2018.2843298   Google Scholar

Munoz-Organero, M., Ruiz-Blaquez, R., & Sánchez-Fernández, L. (2018). Automatic detection of traffic lights, street crossings and urban roundabouts combining outlier detection and deep learning classification techniques based on GPS traces while driving. Computers, Environment and Urban Systems, 68, 1–8. https://doi.org/10.1016/j.compenvurbsys.2017.09.005
DOI: https://doi.org/10.1016/j.compenvurbsys.2017.09.005   Google Scholar

Sarmento, J., Renneboog, L., & Matos, P.V. (2017). Measuring highway efficiency by a DEA approach and the Malmquist index. European Journal of Transport and Infrastructure Research, 17(4), 530–551.
  Google Scholar

Schmitt, J.P., & Baldo, F. (2018). A Method to Suggest Alternative Routes Based on Analysis of Automobiles’ Trajectories. In: 2018 XLIV Latin American Computer Conference (CLEI) (pp. 436–444). http://doi.org/10.1109/CLEI.2018.00059.
DOI: https://doi.org/10.1109/CLEI.2018.00059   Google Scholar

Shaikh, S.A., & Kitagawa, H. (2014). Efficient distance-based outlier detection on uncertain datasets of Gaussian distribution. World Wide Web, 17(4), 511–538.
DOI: https://doi.org/10.1007/s11280-013-0211-y   Google Scholar

Yuan, G., Sun, P., Zhao, J., Li, D., & Wang, C. (2017). A review of moving object trajectory clustering algorithms. Artificial Intelligence Review, 47(1), 123–144.
DOI: https://doi.org/10.1007/s10462-016-9477-7   Google Scholar

Download


Published
2020-06-30

Cited by

LOPEZ, A. J., QUINTERO, P. M., & HERNANDEZ, A. K. (2020). ANALYTICS AND DATA SCIENCE APPLIED TO THE TRAJECTORY OUTLIER DETECTION. Applied Computer Science, 16(2), 5–17. https://doi.org/10.35784/acs-2020-09

Authors

Alexis J. LOPEZ 
alexistegno@gmail.com
Tecnológico Nacional de México, Instituto Tecnológico de Apizaco, 90300, Carretera Apizaco-Tzompantepec, Esquina Av., Instituto Tecnologico S/N, Apizaco, Tlaxcala Mexico

Authors

Perfecto M. QUINTERO 

Tecnológico Nacional de México, Instituto Tecnológico de Apizaco, 90300, Carretera Apizaco-Tzompantepec, Esquina Av., Instituto Tecnologico S/N, Apizaco, Tlaxcala Mexico

Authors

Ana K. HERNANDEZ 

Tecnológico Nacional de México, Instituto Tecnológico de Apizaco, 90300, Carretera Apizaco-Tzompantepec, Esquina Av., Instituto Tecnologico S/N, Apizaco, Tlaxcala Mexico

Statistics

Abstract views: 192
PDF downloads: 22


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.