Cao, K., Shi, L., Wang, G., Han, D., & Bai, M. (2014). Density-Based Local Outlier Detection on Uncertain Data. In: F. Li, G. Li, S.W. Hwang, B. Yao & Z. Zhang, (Eds.), Web-Age Information Management (pp. 67–71). Springer International Publishing, Cham.
DOI: https://doi.org/10.1007/978-3-319-08010-9_9
Domínguez, D.R., Redondo, R.P.D., Vilas, A.F., & Khalifa, M.B. (2017). Sensing the city with Instagram: Clustering geolocated data for outlier detection. Expert Systems with Applications, 78, 319–333.
DOI: https://doi.org/10.1016/j.eswa.2017.02.018
Fontes, V.C., de Alencar, L.A., Renso, C., & Bogorny, V. (2013). Discovering Trajectory Outliers between Regions of Interest. In Proceedings of XIV GEOINFO (p. 12). Campos do Jordao, Brazil.
Gan, J., & Tao, Y. (2015). DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approximation. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data – SIGMOD ’15 (pp. 519–530). ACM Press, Melbourne, Victoria, Australia.
DOI: https://doi.org/10.1145/2723372.2737792
Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques. Third edition. Elsevier.
Hazel, G.G. (2008). Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection. In IEEE Transactions on Geoscience and Remote Sensing, 38(3), 1199–1211.
DOI: https://doi.org/10.1109/36.843012
Lee, J.G., Han, J., & Li, X. (2008). Trajectory Outlier Detection: A Partition-and-Detect Framework. In: 2008 IEEE 24th International Conference on Data Engineering (pp. 140–149). https://doi.org/10.1109/ICDE.2008.4497422
DOI: https://doi.org/10.1109/ICDE.2008.4497422
Lei, B., & Mingchao, D. (2018). A distance-based trajectory outlier detection method on maritime traffic data. In 2018 4th International Conference on Control, Automation and Robotics (ICCAR) (pp. 340–343). https://doi.org/10.1109/ICCAR.2018.8384697
DOI: https://doi.org/10.1109/ICCAR.2018.8384697
Liao, T.W. (2005). Clustering of time series data—a survey. Pattern Recognition, 38(11), 1857–1874.
DOI: https://doi.org/10.1016/j.patcog.2005.01.025
Liu, Z., Pi, D., & Jiang, J. (2013). Density-based trajectory outlier detection algorithm. Journal of Systems Engineering and Electronics, 24(2), 335–340.
DOI: https://doi.org/10.1109/JSEE.2013.00042
Markovic, N., Sekula, P., Vander Laan, Z., Andrienko, G., & Andrienko, N. (2019). Applications of Trajectory Data From the Perspective of a Road Transportation Agency: Literature Review and Maryland Case Study. IEEE Transactions on Intelligent Transportation Systems, 20(5), 1858–1869. https://doi.org/10.1109/TITS.2018.2843298
DOI: https://doi.org/10.1109/TITS.2018.2843298
Munoz-Organero, M., Ruiz-Blaquez, R., & Sánchez-Fernández, L. (2018). Automatic detection of traffic lights, street crossings and urban roundabouts combining outlier detection and deep learning classification techniques based on GPS traces while driving. Computers, Environment and Urban Systems, 68, 1–8. https://doi.org/10.1016/j.compenvurbsys.2017.09.005
DOI: https://doi.org/10.1016/j.compenvurbsys.2017.09.005
Sarmento, J., Renneboog, L., & Matos, P.V. (2017). Measuring highway efficiency by a DEA approach and the Malmquist index. European Journal of Transport and Infrastructure Research, 17(4), 530–551.
Schmitt, J.P., & Baldo, F. (2018). A Method to Suggest Alternative Routes Based on Analysis of Automobiles’ Trajectories. In: 2018 XLIV Latin American Computer Conference (CLEI) (pp. 436–444). http://doi.org/10.1109/CLEI.2018.00059.
DOI: https://doi.org/10.1109/CLEI.2018.00059
Shaikh, S.A., & Kitagawa, H. (2014). Efficient distance-based outlier detection on uncertain datasets of Gaussian distribution. World Wide Web, 17(4), 511–538.
DOI: https://doi.org/10.1007/s11280-013-0211-y
Yuan, G., Sun, P., Zhao, J., Li, D., & Wang, C. (2017). A review of moving object trajectory clustering algorithms. Artificial Intelligence Review, 47(1), 123–144.
DOI: https://doi.org/10.1007/s10462-016-9477-7