Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794). ACM. https://doi.org/10.1145/2939672.2939785
DOI: https://doi.org/10.1145/2939672.2939785
Hata, H., Mizuno, O., & Kikuno, T. (2012). Bug prediction based on fine-grained module histories. In Proceedings of the 34th International Conference on Software Engineering (pp. 200–210). IEEE Press.
DOI: https://doi.org/10.1109/ICSE.2012.6227193
Huang, Q., Xia, X., & Lo, D. (2019). Revisiting supervised and unsupervised models for effortaware just-in-time defect prediction. Empirical Software Engineering, 24(5), 2823–2862. https://doi.org/10.1007/s10664-018-9661-2
DOI: https://doi.org/10.1007/s10664-018-9661-2
Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.I., Adams, B., & Hassan, A. E. (2010). Revisiting common bug prediction findings using effort-aware models. In 2010 IEEE International Conference on Software Maintenance (pp. 1–10). IEEE. https://doi.org/10.1109/ICSM.2010.5609530
DOI: https://doi.org/10.1109/ICSM.2010.5609530
Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A., & Ubayashi, N. (2012). A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering, 39(6), 57–773. http://doi.org/10.1109/TSE.2012.70
DOI: https://doi.org/10.1109/TSE.2012.70
Liu, C., Yang, D., Xia, X., Yan, M., & Zhang, X. (2018). Cross-Project Change-Proneness Prediction. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1, pp. 64–73). IEEE.
DOI: https://doi.org/10.1109/COMPSAC.2018.00017
Mockus, A., & Weiss, D.M. (2000). Predicting risk of software changes. Bell Labs Technical Journal, 5(2), 169–180.
DOI: https://doi.org/10.1002/bltj.2229
Qiao, L., & Wang, Y. (2019). Effort-aware and just-in-time defect prediction with neural network. PloS one, 14(2), e0211359. https://doi.org/10.1371/journal.pone.0211359
DOI: https://doi.org/10.1371/journal.pone.0211359
Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., ... & Leung, H. (2016). Effort-aware just-intime defect prediction: simple unsupervised models could be better than supervised models. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (pp. 157–168). ACM. https://doi.org/10.1145/2950290.2950353
DOI: https://doi.org/10.1145/2950290.2950353
Yu, T., Wen, W., Han, X., & Hayes, J. (2018). ConPredictor: Concurrency Defect Prediction in Real-World Applications. IEEE Transactions on Software Engineering, 45(6), 558–575. https://doi.org/10.1109/TSE.2018.2791521
DOI: https://doi.org/10.1109/TSE.2018.2791521
Zhou, T., Sun, X., Xia, X., Li, B., & Chen, X. (2019). Improving defect prediction with deep forest. Information and Software Technology, 114, 204–216. https://doi.org/10.1016/j.infsof.2019.07.003
DOI: https://doi.org/10.1016/j.infsof.2019.07.003