IMPACT-BASED PIEZOELECTRIC ENERGY HARVESTING SYSTEM EXCITED FROM DIESEL ENGINE SUSPENSION
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
Vibration energy harvesting systems are using real ambient sources of vibration excitation. In our paper, we study the dynamical voltage response of the piezoelectric vibrational energy harvesting system (PVEHs) with a mechanical resonator possessing an amplitude limiter. The PVEHs consist of the cantilever beam with a piezoelectric patch. The proposed system was subjected to the inertial excitation from the engine suspension. Impacts of the beam resonator are useful to increase of system’s frequency transition band. The suitable simulations of the resonator and piezoelectric transducer are performed by using measured signal from the engine suspension. Voltage outputs of linear (without amplitude limiter) and nonlinear harvesters were compared indicating better efficiency of the nonlinear design.
Keywords:
References
Al-Yafeai, D., Darabseh, T., & Mourad, A.H.I. (2020). A state-of-the-art review of car suspensionbased piezoelectric energy harvesting systems. Energies, 13, 2336. https://doi.org/10.3390/en13092336 DOI: https://doi.org/10.3390/en13092336
Ambrożkiewicz, B., Litak, G., & Wolszczak, P. (2020). Modelling of electromagnetic energy harvester with rotational pendulum using mechanical vibrations to scavenge electrical energy. Applied Sciences, 10, 671. https://doi.org/10.3390/app10020671 DOI: https://doi.org/10.3390/app10020671
Askari, H., Hashemi, E., Khajepour, A., Khamesee, M.B., & Wang, Z.L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032 DOI: https://doi.org/10.1016/j.nanoen.2018.09.032
Borowiec, M., Litak, G., & Lenci, S. (2014). Noise effected energy harvesting in a beam with stopper. International Journal of Structural Stability and Dynamics, 14, 1440020. https://doi.org/10.1142/S0219455414400203 DOI: https://doi.org/10.1142/S0219455414400203
Bowen, C.R., & Arafa, M.H. (2015). Energy harvesting technologies for tire pressure monitoring systems. Advanced Energy Materials, 5, 1401787. https://doi.org/10.1002/aenm.201401787 DOI: https://doi.org/10.1002/aenm.201401787
Chandru, A.A., Murugan, S.S., & Keerthika, V. (2016). Design and implementation of an energy harvester for Low-Power devices from vibration of automobile engine. Advances in Intelligent Systems and Computing, 397, 1–8. DOI: https://doi.org/10.1007/978-81-322-2671-0_1
Erturk, A., Hoffmann, J., & Inman, D.J. (2009). A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 94, 254102. https://doi.org/10.1063/1.3159815 DOI: https://doi.org/10.1063/1.3159815
Feng, Z., Liang, M., & Chu, F. (2013). Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mechanical Systems and Signal Processing, 38, 165-205. https://doi.org/10.1016/j.ymssp.2013.01.017 DOI: https://doi.org/10.1016/j.ymssp.2013.01.017
Figlus, T., Szafraniec, P., & Skrucany, T. (2019). Methods of measuring and processing signals during tests of the exposure of a motorcycle driver to vibration and noise. International Journal of Environmental Research and Public Health, 16, 17, 3145. https://doi.org/10.3390/ijerph16173145 DOI: https://doi.org/10.3390/ijerph16173145
Gardyński, L., Caban, J., & Droździel, P. (2015). The impact of stiffness of engine suspension cushions in an all-terrain vehcile on its transverse displacement. Journal of Science of the Military Academy of Land Forces, 47, 95–102. DOI: https://doi.org/10.5604/17318157.1179658
Gatti, C.D., Ramirez, J.M., Febbo, M., & Machado, S.P. (2018). Multimodal piezoelectric device for energy harvesting from engine vibration. Journal of Mechanics of Materials and Structures, 13, 17-34. https://doi.org/10.2140/jomms.2018.13.17 DOI: https://doi.org/10.2140/jomms.2018.13.17
Huang, D., Zhou, S., & Litak, G. (2019). Theoretical analysis of multi-stable energy harvesters with high order stiffness terms. Communications in Nonlinear Science and Numerical Simulation, 69, 270-286. https://doi.org/10.1016/j.cnsns.2018.09.025 DOI: https://doi.org/10.1016/j.cnsns.2018.09.025
Huguet, T., Lallart, M., & Badel, A. (2019). Orbit jump in bistable energy harvesters through buckling level modification. Mechanical Systems and Signal Processing, 128, 202–215. https://doi.org/10.1016/j.ymssp.2019.03.051 DOI: https://doi.org/10.1016/j.ymssp.2019.03.051
Jung, H.J., Song, Y., Hong, S.K., Yang, C.H., Hwang, S.J., Jeong, S.Y., & Sung, T.H. (2015). Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators, A 222, 314–321. https://doi.org/10.1016/j.sna.2014.12.010 DOI: https://doi.org/10.1016/j.sna.2014.12.010
Khalatkar, A.M., & Gupta, V.K. (2017). Piezoelectric energy harvester for low engine vibrations. Journal of Renewable and Sustainable Energy, 9, 024701. https://doi.org/10.1063/1.4979501 DOI: https://doi.org/10.1063/1.4979501
Kim, G.W. (2014). Piezoelectric energy harvesting from torsional vibration in internal combustion engines. International Journal of Automotive Technology, 16, 645–651. https://doi.org/10.1007/s12239-015-0066-6 DOI: https://doi.org/10.1007/s12239-015-0066-6
Koszewnik, A. (2019). Analytical modelling and experimental validation of an energy harvesting system for the smart plate with integrated piezo-harvester. Sensors, 19, 812. https://doi.org/10.3390/s19040812 DOI: https://doi.org/10.3390/s19040812
Koszewnik, A. (2020). Experimental validation of equivalent circuit modelling of the piezo-stripe harvester attached to SFSF rectangular plate. Acta Mechanica et Automatica, 14, 8–15. https://doi.org/10.2478/ama-2020-0002 DOI: https://doi.org/10.2478/ama-2020-0002
Litak, G, Friswell, M.I., & Adhikari, S. (2010) Magnetopiezoelastic energy harvesting driven by random excitations. Applied Physics Letters, 96, 214103. https://doi.org/10.1063/1.3436553 DOI: https://doi.org/10.1063/1.3436553
Łukjanow, S., & Zieliński, W. (2016). Examination and assessment of electric vehicles’ operational safety. The Archives of Automotive Engineering – Archiwum Motoryzacji, 74, 4, 59–82. https://doi.org/10.14669/AM.VOL74.ART5 DOI: https://doi.org/10.14669/AM.VOL74.ART5
Matsuzaki, R., & Todoroki, A. (2008). Wireless Monitoring of Automobile Tires for Intelligent Tires. Sensors, 8, 8123-8138. https://doi.org/10.3390/s8128123 DOI: https://doi.org/10.3390/s8128123
Mieczkowski, G., Borawski, A., & Szpica, D. (2019). Static electromechanical characteristic of threelayer circular piezoelectric transducer. Sensors, 20, 222. https://doi.org/10.3390/s20010222 DOI: https://doi.org/10.3390/s20010222
Šarkan, B., Gnap, J., & Kiktová, M. (2019). The importance of hybrid vehicles in urban traffic in terms of environmental impact. The Archives of Automotive Engineering – Archiwum Motoryzacji, 85, 3, 115–122. https://doi.org/10.14669/AM.VOL85.ART8 DOI: https://doi.org/10.14669/AM.VOL85.ART8
Skrucany, T., Kendra, M., Stopka, O., Milojevic, S., Figlus, T., & Csiszar, C. (2019). Impact of the electric mobility implementation on the Greenhouse Gases production in central European Countries. Sustainability, 11(18), 4948. https://doi.org/10.3390/su11184948 DOI: https://doi.org/10.3390/su11184948
Smutny, J., Nohal, V., Vukusicova, D., & Seelmann, H. (2018). Vibration analysis by the WignerVille transformation method. Communications – Scientific Letters of the University of Zilina, 20, 4, 24–28. DOI: https://doi.org/10.26552/com.C.2018.4.24-28
Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., & Mohtasebi, S.S. (2012). Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel, 102, 414–422. DOI: https://doi.org/10.1016/j.fuel.2012.06.109
Tan, Y., Dong, Y., & Wang, X. (2017). Review of MEMS electromagnetic vibration energy harvester. Journal of Microelectromechanical Systems, 26, 1–16. DOI: https://doi.org/10.1109/JMEMS.2016.2611677
Vijayan, K., Friswell, M.I., Khodaparast, H.H., & Adhikari, S. (2015). Non-linear energy harvesting from coupled impacting beams. International Journal of Mechanical Sciences, 96-97, 101-109. https://doi.org/10.1016/j.ijmecsci.2015.03.001 DOI: https://doi.org/10.1016/j.ijmecsci.2015.03.001
Xie, X., & Wang, Q. (2015). A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires. International Journal of Engineering Science, 94, 113–127. https://doi.org/10.1016/j.ijengsci.2015.05.004 DOI: https://doi.org/10.1016/j.ijengsci.2015.05.004
Zhang, Y. (2014). Piezoelectric based energy harvesting on low frequency vibrations of civil infrastructures. LSU Doctoral Dissertations, 1342.
Zhang, Y., Wang, T., Luo, A., Yushen, H., Li, X., & Wang, F. (2018). Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Applied Energy, 212, 362–371. https://doi.org/10.1016/j.apenergy.2017.12.053 DOI: https://doi.org/10.1016/j.apenergy.2017.12.053
Zhang, Y., Zheng, R., Shimono, K., Kaizuka, T., & Nakano, K. (2016). Effectiveness testing of a piezoelectric energy harvester for an automobile wheel using stochastic resonance. Sensors, 16(10), 1727. https://doi.org/10.3390/s16101727 DOI: https://doi.org/10.3390/s16101727
Zhao, L., & Yang, Y. (2018). An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Applied Energy, 212, 233–243. https://doi.org/10.1016/j.apenergy.2017.12.042 DOI: https://doi.org/10.1016/j.apenergy.2017.12.042
Zhu, B., Han, J., & Zhao, J. (2019). Study of Wheel Vibration Energy Harvesting for Intelligent Tires. Lecture Notes in Electrical Engineering, 486, 971–978. https://doi.org/10.1007/978-981-10-8506-2_65 DOI: https://doi.org/10.1007/978-981-10-8506-2_65
Article Details
Abstract views: 225
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.