A ROBUST ENSEMBLE MODEL FOR SPOKEN LANGUAGE RECOGNITION
Article Sidebar
Open full text
Issue Vol. 16 No. 3 (2020)
-
A DEEP ENSEMBLE LEARNING METHOD FOR EFFORT-AWARE JUST-IN-TIME DEFECT PREDICTION
Saleh ALBAHLI5–15
-
IMPACT-BASED PIEZOELECTRIC ENERGY HARVESTING SYSTEM EXCITED FROM DIESEL ENGINE SUSPENSION
Jacek CABAN, Grzegorz LITAK, Bartłomiej AMBROŻKIEWICZ, Leszek GARDYŃSKI, Paweł STĄCZEK, Piotr WOLSZCZAK16-29
-
A SECURITY MODEL FOR PREVENTING E-COMMERCE RELATED CRIMES
Raphael Olufemi AKINYEDE, Sulaiman Omolade ADEGBENRO, Babatola Moses OMILODI30-41
-
COMPUTER-AIDED MATERIAL DEMAND PLANNING USING ERP SYSTEMS AND BUSINESS INTELLIGENCE TECHNOLOGY
Wojciech DANILCZUK, Arkadiusz GOLA42-55
-
A ROBUST ENSEMBLE MODEL FOR SPOKEN LANGUAGE RECOGNITION
Nancy WOODS, Gideon BABATUNDE56-68
-
INSTRUMENTAL COLOR MEASUREMENT OF MEAT AND MEAT PRODUCTS IN X-RITECOLOR® MASTER
Karolina FERYSIUK, Karolina M. WÓJCIAK, Paulina KĘSKA, Dariusz M. STASIAK69-79
-
CONVENTIONAL ENERGY EFFICIENT ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS
Muaayed F. AL-RAWI80-87
-
NUMERICAL PREDICTION OF THE COMPONENT-RATIO-DEPENDENT COMPRESSIVE STRENGTH OF BONE CEMENT
Anna MACHROWSKA, Robert KARPIŃSKI, Józef JONAK, Jakub SZABELSKI88-101
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
Main Article Content
DOI
Authors
Abstract
Effective decision-making in industry conditions requires access and proper presentation of manufacturing data on the realised manufacturing process. Although the frequently applied ERP systems allow for recording economic events, their potential for decision support is limited. The article presents an original system for reporting manufacturing data based on Business Intelligence technology as a support for junior and middle management. As an example a possibility of utilising data from ERP systems to support decision-making in the field of purchases and logistics in small and medium enterprises.
Keywords:
References
Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, G., & Yu, D. (2014). Convolutional neural networks for speech recognition. IEEE Transactions on Audio, Speech and Language Processing, 22(10), 1533–1545. https://doi.org/10.1109/taslp.2014.2339736 DOI: https://doi.org/10.1109/TASLP.2014.2339736
Adami, A., & Hermansky, H. (2003). Segmentation of speech for speaker and language recognition. EUROSPEECH-2003 (pp. 841–844). Geneva. Retrieved from https://www.academia.edu/32317887/Segmentation_of_speech_for_speaker_and_language_recognition DOI: https://doi.org/10.21437/Eurospeech.2003-189
Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., ... Narang, S. (2015). Deep Speech 2: End-to-End Speech Recognition in English and Mandarin. CoRR, abs/1512.02595. Retrieved from https://arxiv.org/abs/1512.02595v1
Ashby, M., & Maidment, J. (2005). Introducing phonetic science. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511808852
Bartz, C., Herold, T., Yang, H., & Meinel, C. (2017). Language Identification Using Deep Convolutional Recurrent Neural Networks. In D. Liu, S. Xie, Y. Li, D. Zhao, & E. El-Alfy (Eds.), Neural Information Processing ICONIP 2017. Lecture Notes in Computer Science (vol. 10639). Springer. https://doi.org/10.1007/978-3-319-70136-3_93 DOI: https://doi.org/10.1007/978-3-319-70136-3_93
Boussard, J., Deveau, A., & Pyron, J. (2017). Methods for Spoken Language Identification. Retrieved from http://cs229.stanford.edu/proj2017/final-reports/5239784.pdf
Eberhard, D. M., Simons, G. F., & Fennig, C. D. (Eds.). (2020). Ethnologue: Languages of the World. Retrieved from http://www.ethnologue.com
Kirchhoff, K. (2006). Language characteristics. In T. Schultz, & K. Kirchhoff (Eds.), Multilingual Speech Processing (pp. 5–33). Elsevier. DOI: https://doi.org/10.1016/B978-012088501-5/50005-6
Li, H., Ma, B., & Lee, K. A. (2013). Spoken Language Recognition: From Fundamentals to Practice. Proceedings of the IEEE, 101(5), 1136–1159. https://doi.org/10.1109/JPROC.2012.2237151 DOI: https://doi.org/10.1109/JPROC.2012.2237151
Muthusamy, Y. K., Cole, R., & Oshika, B. (1992). The OGI multi-language telephone speech corpus. Int. Conf. Spoken Lang. Process, 895-898. Retrieved from https://pdfs.semanticscholar.org/aad7/274fdd57191e89f9df2880a50ec14581d671.pdf DOI: https://doi.org/10.21437/ICSLP.1992-276
Navratil, J. (2001). Spoken language recognition A step toward multilinguality in speech processing. IEEE Trans. Speech Audio Process, 9(6), 678–685. https://doi.org/10.1109/89.943345 DOI: https://doi.org/10.1109/89.943345
Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. Proc. Interspeech 2019 (pp. 2613–2617). https://doi.org/10.21437/interspeech.2019-2680 DOI: https://doi.org/10.21437/Interspeech.2019-2680
Ramus, F., & Mehler, J. (1999). Language identification with suprasegmental cues: A study based on speech re-synthesis. Journal of Acoustical Society of America, 105(1), 512–521. https://doi.org/10.1121/1.424522 DOI: https://doi.org/10.1121/1.424522
Safitri, N. E., Zahra, A., & Adriani, M. (2016). Spoken Language Identification with Phonotactics Methods on Minangkabau, Sundanese, and Javanese Languages. Procedia Computer Science 81 (pp. 182–187). Elsevier. https://doi.org/10.1016/j.procs.2016.04.047 DOI: https://doi.org/10.1016/j.procs.2016.04.047
Sugiyama, M. (1991). Automatic language recognition using acoustic features. International Conference on Acoustics, Speech, and Signal Processing (pp. 813–816). Toronto. https://doi.org/10.1109/icassp.1991.150461 DOI: https://doi.org/10.1109/ICASSP.1991.150461
Torres-Carrasquillo, P., Singer, E., Kohler, M., Greene, R., Reynolds, D., & Deller, J. (2002). Approaches to language identification using Gaussian mixture models and shifted delta cepstral features. In ICSLP-2002 (pp. 89–92). Denver. https://doi.org/10.1109/icassp.2002.5743828 DOI: https://doi.org/10.21437/ICSLP.2002-74
Zhao, J., Shu, H., Zhang, L., Wang, X., Gong, Q., & Li, P. (2008). Cortical competition during language discrimination. NeuroImage, 43(3), 624–633. https://doi.org/10.1016/j.neuroimage.2008.07.025 DOI: https://doi.org/10.1016/j.neuroimage.2008.07.025
Zissman, M. (1996). Comparison of four approaches to automatic language identification of telephone speech. IEEE Transactions on Speech and Audio Processing, 4(1), 31–44. https://doi.org/10.1109/icassp.1993.319323 DOI: https://doi.org/10.1109/TSA.1996.481450
Zissman, M. A. (1993). Automatic language identification using Gaussian mixture and hidden Markov models. IEEE International Conference on Acoustics, Speech and Signal Processing (Vol. 2, pp. 399–402). IEEE. https://doi.org/10.1109/tsa.1996.481450 DOI: https://doi.org/10.1109/ICASSP.1993.319323
Article Details
Abstract views: 352
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
