NUMERICAL PREDICTION OF THE COMPONENT-RATIO-DEPENDENT COMPRESSIVE STRENGTH OF BONE CEMENT

Anna MACHROWSKA

a.machrowska@pollub.pl
Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Robert KARPIŃSKI


Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Józef JONAK


Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Jakub SZABELSKI


Lublin University of Technology, Faculty of Mechanical Engineering Department of Computerization and Production Robotization, Section of Biomedical Engineering, Nadbystrzycka 36, 20-618 Lublin (Poland)

Abstract

Changes in the compression strength of the PMMA bone cement with a variable powder/liquid component mix ratio were investigated. The strength test data served to develop basic mathematical models and an artificial neural network was employed for strength predictions. The empirical and numerical results were compared to determine modelling errors and assess the effectiveness of the proposed methods and models. The advantages and disadvantages of mathematical modelling are discussed.


Keywords:

artificial neural networks, mathematical modelling, biomaterials, bone cement

Balin, A. (2004). Materiałowo uwarunkowane procesy adaptacyjne i trwałość cementów stosowanych w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej.
  Google Scholar

Balin, A. (2016). Cementy w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej. Bialoblocka-Juszczyk, E., Baleani, M., Cristofolini, L., & Viceconti, M. (2008). Fracture Properties of an Acrylic Bone Cement. Acta of Bioengineering and Biomechanics, 10(1), 21–26.
  Google Scholar

Charnley, J. (1960). Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur. The Journal of Bone and Joint Surgery. British Volume, 42(1), 28–30. https://doi.org/10.1302/0301-620X.42B1.28
DOI: https://doi.org/10.1302/0301-620X.42B1.28   Google Scholar

Chen, X., Zhang, L., Liu, T., & Kamruzzaman, M.M. (2019). Research on Deep Learning in the Field of Mechanical Equipment Fault Diagnosis Image Quality. Journal of Visual Communication and Image Representation, 62, 402–409. https://doi.org/10.1016/j.jvcir.2019.06.007
DOI: https://doi.org/10.1016/j.jvcir.2019.06.007   Google Scholar

Dunne, N.J., & Orr, J.F. (2001). Influence of Mixing Techniques on the Physical Properties of Acrylic Bone Cement. Biomaterials, 22(13), 1819-1826. https://doi.org/10.1016/S0142-9612(00)00363-X
DOI: https://doi.org/10.1016/S0142-9612(00)00363-X   Google Scholar

Dunne, N.J., Orr, J.F., Mushipe, M.T., & Eveleigh, R.J. (2003). The Relationship between Porosity and Fatigue Characteristics of Bone Cements. Biomaterials, 24(2), 239–245. https://doi.org/10.1016/S0142-9612(02)00296-X
DOI: https://doi.org/10.1016/S0142-9612(02)00296-X   Google Scholar

Falkowicz, K., & Debski, H. (2019). The Work of a Compressed, Composite Plate in Asymmetrical Arrangement of Layers. AIP Conference Proceedings, 2078, 020005. https://doi.org/10.1063/1.5092008
DOI: https://doi.org/10.1063/1.5092008   Google Scholar

Falkowicz, K., & Debski, H. (2020). The Post-Critical Behaviour of Compressed Plate with NonStandard Play Orientation. Composite Structures, 252, 112701. https://doi.org/10.1016/j.compstruct.2020.112701
DOI: https://doi.org/10.1016/j.compstruct.2020.112701   Google Scholar

Falkowicz, K., Debski, H., & Wysmulski, P. (2020). Effect of Extension-Twisting and ExtensionBending Coupling on a Compressed Plate with a Cut-Out. Composite Structures, 238, 111941. https://doi.org/10.1016/j.compstruct.2020.111941
DOI: https://doi.org/10.1016/j.compstruct.2020.111941   Google Scholar

de Haan, K., Rivenson, Y., Wu, Y., & Ozcan, A. (2020). Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy. Proceedings of the IEEE, 108(1), 30–50. https://doi.org/10.1109/JPROC.2019.2949575
DOI: https://doi.org/10.1109/JPROC.2019.2949575   Google Scholar

Hatt, M., Parmar, Ch., Qi, J., & El Naqa, I. (2019). Machine (Deep) Learning Methods for Image Processing and Radiomics. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(2), 104–108. https://doi.org/10.1109/TRPMS.2019.2899538
DOI: https://doi.org/10.1109/TRPMS.2019.2899538   Google Scholar

Hosseini, M.P., Hosseini, A., & Ahi, K. (2020). A Review on Machine Learning for EEG Signal Processing in Bioengineering. In IEEE Reviews in Biomedical Engineering (p. 1–1). IEEE. https://doi.org/10.1109/RBME.2020.2969915
DOI: https://doi.org/10.1109/RBME.2020.2969915   Google Scholar

Jiménez, G., & Racoceanu, D. (2019). Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading. Frontiers in Bioengineering and Biotechnology, 7, 145. https://doi.org/10.3389/fbioe.2019.00145
DOI: https://doi.org/10.3389/fbioe.2019.00145   Google Scholar

Karpiński, R., Szabelski, J., & Maksymiuk, J. (2018). Analysis of the Properties of Bone Cement with Respect to Its Manufacturing and Typical Service Lifetime Conditions. MATEC Web of Conferences, 244, 01004. https://doi.org/10.1051/matecconf/201824401004
DOI: https://doi.org/10.1051/matecconf/201824401004   Google Scholar

Karpiński, R., Szabelski, J., & Maksymiuk, J. (2019a). Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement. Materials, 12(23), 3963. https://doi.org/10.3390/ma12233963
DOI: https://doi.org/10.3390/ma12233963   Google Scholar

Karpiński, R., Szabelski, J., & Maksymiuk, J. (2019b). Seasoning Polymethyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio. Materials, 12(19), 3073. https://doi.org/10.3390/ma12193073
DOI: https://doi.org/10.3390/ma12193073   Google Scholar

Lee, S.M., Seo, J.B., Yun, J., Cho, Y.-H., Vogel-Claussen, J., Schiebler, M.L., Gefter, W.B., van Beek, E.J.R., Goo, J.M., Lee, K.S., Hatabu, H., Gee, J., & Kim, N. (2019). Deep Learning Applications in Chest Radiography and Computed Tomography: Current State of the Art. Journal of Thoracic Imaging, 34(2), 75–85. https://doi.org/10.1097/RTI.0000000000000387
DOI: https://doi.org/10.1097/RTI.0000000000000387   Google Scholar

Lelovics, H., & Liptáková, T. (2019). Comparison of Some Mechanical and Rheological Properties of Bone Cements’. In 5th Danubia – Adria Symposium on Advances in Experimental Mechanics (pp. 157–158). Czech Republic.
  Google Scholar

Lelovics, H., & Liptakova, T. (2010). Time and Mixing Techniquedependent Changes in Bone Cement SmartSet (R) HV. Acta of Bioengineering and Biomechanics, 12(4), 63–67.
DOI: https://doi.org/10.26552/com.C.2010.4.85-89   Google Scholar

Liptáková, T., Lelovics, H., & Necas, L. (2009). Variations of Temperature of Acrylic Bone Cements Prepared by Hand and Vacuum Mixing during Their Polymerization. Acta of Bioengineering and Biomechanics, 11(3), 47–51.
  Google Scholar

Matuszewski, Ł., Olchowik, G., Mazurkiewicz, T., Kowalczyk, B., Zdrojewska, A., Matuszewska, A., Ciszewski, A., Gospodarek, M., & Morawik, I. (2014). Biomechanical Parameters of the BP-Enriched Bone Cement. European Journal of Orthopaedic Surgery & Traumatology, 24(4), 435–441. https://doi.org/10.1007/s00590-013-1230-1
DOI: https://doi.org/10.1007/s00590-013-1230-1   Google Scholar

Pałubicka, A., Czubek, J., & Wekwejt, M. (2019). Effect of Aeration of Antibiotic-Loaded Bone Cement on Its Properties and Bactericidal Effectiveness. Minerva Ortopedica e Traumatologica, 70(2), 78–85. https://doi.org/10.23736/S0394-3410.19.03913-4
DOI: https://doi.org/10.23736/S0394-3410.19.03913-4   Google Scholar

Tan, J.H., Koh, B.Th., Ramruttun, A.K., & Wang, W. (2016). Compression and Flexural Strength of Bone Cement Mixed with Blood. Journal of Orthopaedic Surgery (Hong Kong), 24(2), 240–244. https://doi.org/10.1177/1602400223
DOI: https://doi.org/10.1177/1602400223   Google Scholar

Tu, Y.-H., Du, J., & Lee, Ch.-H. (2019). Speech Enhancement Based on Teacher–Student Deep Learning Using Improved Speech Presence Probability for Noise-Robust Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(12), 2080-2091. https://doi.org/10.1109/TASLP.2019.2940662
DOI: https://doi.org/10.1109/TASLP.2019.2940662   Google Scholar

Wekwejt, M., Michalska-Sionkowska, M., Bartmański, M., Nadolska, M., Łukowicz, K., Pałubicka, A., Osyczka, A.M., & Zieliński, A. (2020). Influence of Several Biodegradable Components Added to Pure and Nanosilver-Doped PMMA Bone Cements on Its Biological and Mechanical Properties. Materials Science and Engineering: C, 117, 111286. https://doi.org/10.1016/j.msec.2020.111286
DOI: https://doi.org/10.1016/j.msec.2020.111286   Google Scholar

Wekwejt, M., Moritz, N., Świeczko-Żurek, B., & Pałubicka, A. (2018). Biomechanical Testing of Bioactive Bone Cements – a Comparison of the Impact of Modifiers: Antibiotics and Nanometals. Polymer Testing, 70, 234–243. https://doi.org/10.1016/j.polymertesting.2018.07.014
DOI: https://doi.org/10.1016/j.polymertesting.2018.07.014   Google Scholar

Wekwejt, M., Michno, A., Truchan, K., Pałubicka, A., Świeczko-Żurek, B., Osyczka, A.M., & Zieliński, A. (2019). Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. Nanomaterials, 9(8), 1114. doi: https://doi.org/10.3390/nano9081114
DOI: https://doi.org/10.3390/nano9081114   Google Scholar

Younesi, M., Bahrololoom, M.E., & Ahmadzadeh, M. (2010). Prediction of Wear Behaviors of Nickel Free Stainless Steel–Hydroxyapatite Bio-Composites Using Artificial Neural Network. Computational Materials Science, 47(3), 645–54.
  Google Scholar

https://doi.org/10.1016/j.commatsci.2009.09.019
DOI: https://doi.org/10.1016/j.commatsci.2009.09.019   Google Scholar

Zhang, W., Cui, X., Finkler, U., Kingsbury, B., Saon, G., Kung, D., & Picheny, M. (2019). Distributed Deep Learning Strategies for Automatic Speech Recognition. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5706–5710). Brighton, United Kingdom: IEEE.
DOI: https://doi.org/10.1109/ICASSP.2019.8682888   Google Scholar

Download


Published
2020-09-30

Cited by

MACHROWSKA, A. ., KARPIŃSKI, R., JONAK, J., & SZABELSKI, J. . (2020). NUMERICAL PREDICTION OF THE COMPONENT-RATIO-DEPENDENT COMPRESSIVE STRENGTH OF BONE CEMENT. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24

Authors

Anna MACHROWSKA 
a.machrowska@pollub.pl
Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Robert KARPIŃSKI 

Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Józef JONAK 

Lublin University of Technology Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Jakub SZABELSKI 

Lublin University of Technology, Faculty of Mechanical Engineering Department of Computerization and Production Robotization, Section of Biomedical Engineering, Nadbystrzycka 36, 20-618 Lublin Poland

Statistics

Abstract views: 230
PDF downloads: 38


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.