NUMERICAL PREDICTION OF THE COMPONENT-RATIO-DEPENDENT COMPRESSIVE STRENGTH OF BONE CEMENT
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
Changes in the compression strength of the PMMA bone cement with a variable powder/liquid component mix ratio were investigated. The strength test data served to develop basic mathematical models and an artificial neural network was employed for strength predictions. The empirical and numerical results were compared to determine modelling errors and assess the effectiveness of the proposed methods and models. The advantages and disadvantages of mathematical modelling are discussed.
Keywords:
References
Balin, A. (2004). Materiałowo uwarunkowane procesy adaptacyjne i trwałość cementów stosowanych w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej.
Balin, A. (2016). Cementy w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej. Bialoblocka-Juszczyk, E., Baleani, M., Cristofolini, L., & Viceconti, M. (2008). Fracture Properties of an Acrylic Bone Cement. Acta of Bioengineering and Biomechanics, 10(1), 21–26.
Charnley, J. (1960). Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur. The Journal of Bone and Joint Surgery. British Volume, 42(1), 28–30. https://doi.org/10.1302/0301-620X.42B1.28 DOI: https://doi.org/10.1302/0301-620X.42B1.28
Chen, X., Zhang, L., Liu, T., & Kamruzzaman, M.M. (2019). Research on Deep Learning in the Field of Mechanical Equipment Fault Diagnosis Image Quality. Journal of Visual Communication and Image Representation, 62, 402–409. https://doi.org/10.1016/j.jvcir.2019.06.007 DOI: https://doi.org/10.1016/j.jvcir.2019.06.007
Dunne, N.J., & Orr, J.F. (2001). Influence of Mixing Techniques on the Physical Properties of Acrylic Bone Cement. Biomaterials, 22(13), 1819-1826. https://doi.org/10.1016/S0142-9612(00)00363-X DOI: https://doi.org/10.1016/S0142-9612(00)00363-X
Dunne, N.J., Orr, J.F., Mushipe, M.T., & Eveleigh, R.J. (2003). The Relationship between Porosity and Fatigue Characteristics of Bone Cements. Biomaterials, 24(2), 239–245. https://doi.org/10.1016/S0142-9612(02)00296-X DOI: https://doi.org/10.1016/S0142-9612(02)00296-X
Falkowicz, K., & Debski, H. (2019). The Work of a Compressed, Composite Plate in Asymmetrical Arrangement of Layers. AIP Conference Proceedings, 2078, 020005. https://doi.org/10.1063/1.5092008 DOI: https://doi.org/10.1063/1.5092008
Falkowicz, K., & Debski, H. (2020). The Post-Critical Behaviour of Compressed Plate with NonStandard Play Orientation. Composite Structures, 252, 112701. https://doi.org/10.1016/j.compstruct.2020.112701 DOI: https://doi.org/10.1016/j.compstruct.2020.112701
Falkowicz, K., Debski, H., & Wysmulski, P. (2020). Effect of Extension-Twisting and ExtensionBending Coupling on a Compressed Plate with a Cut-Out. Composite Structures, 238, 111941. https://doi.org/10.1016/j.compstruct.2020.111941 DOI: https://doi.org/10.1016/j.compstruct.2020.111941
de Haan, K., Rivenson, Y., Wu, Y., & Ozcan, A. (2020). Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy. Proceedings of the IEEE, 108(1), 30–50. https://doi.org/10.1109/JPROC.2019.2949575 DOI: https://doi.org/10.1109/JPROC.2019.2949575
Hatt, M., Parmar, Ch., Qi, J., & El Naqa, I. (2019). Machine (Deep) Learning Methods for Image Processing and Radiomics. IEEE Transactions on Radiation and Plasma Medical Sciences, 3(2), 104–108. https://doi.org/10.1109/TRPMS.2019.2899538 DOI: https://doi.org/10.1109/TRPMS.2019.2899538
Hosseini, M.P., Hosseini, A., & Ahi, K. (2020). A Review on Machine Learning for EEG Signal Processing in Bioengineering. In IEEE Reviews in Biomedical Engineering (p. 1–1). IEEE. https://doi.org/10.1109/RBME.2020.2969915 DOI: https://doi.org/10.1109/RBME.2020.2969915
Jiménez, G., & Racoceanu, D. (2019). Deep Learning for Semantic Segmentation vs. Classification in Computational Pathology: Application to Mitosis Analysis in Breast Cancer Grading. Frontiers in Bioengineering and Biotechnology, 7, 145. https://doi.org/10.3389/fbioe.2019.00145 DOI: https://doi.org/10.3389/fbioe.2019.00145
Karpiński, R., Szabelski, J., & Maksymiuk, J. (2018). Analysis of the Properties of Bone Cement with Respect to Its Manufacturing and Typical Service Lifetime Conditions. MATEC Web of Conferences, 244, 01004. https://doi.org/10.1051/matecconf/201824401004 DOI: https://doi.org/10.1051/matecconf/201824401004
Karpiński, R., Szabelski, J., & Maksymiuk, J. (2019a). Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement. Materials, 12(23), 3963. https://doi.org/10.3390/ma12233963 DOI: https://doi.org/10.3390/ma12233963
Karpiński, R., Szabelski, J., & Maksymiuk, J. (2019b). Seasoning Polymethyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio. Materials, 12(19), 3073. https://doi.org/10.3390/ma12193073 DOI: https://doi.org/10.3390/ma12193073
Lee, S.M., Seo, J.B., Yun, J., Cho, Y.-H., Vogel-Claussen, J., Schiebler, M.L., Gefter, W.B., van Beek, E.J.R., Goo, J.M., Lee, K.S., Hatabu, H., Gee, J., & Kim, N. (2019). Deep Learning Applications in Chest Radiography and Computed Tomography: Current State of the Art. Journal of Thoracic Imaging, 34(2), 75–85. https://doi.org/10.1097/RTI.0000000000000387 DOI: https://doi.org/10.1097/RTI.0000000000000387
Lelovics, H., & Liptáková, T. (2019). Comparison of Some Mechanical and Rheological Properties of Bone Cements’. In 5th Danubia – Adria Symposium on Advances in Experimental Mechanics (pp. 157–158). Czech Republic.
Lelovics, H., & Liptakova, T. (2010). Time and Mixing Techniquedependent Changes in Bone Cement SmartSet (R) HV. Acta of Bioengineering and Biomechanics, 12(4), 63–67. DOI: https://doi.org/10.26552/com.C.2010.4.85-89
Liptáková, T., Lelovics, H., & Necas, L. (2009). Variations of Temperature of Acrylic Bone Cements Prepared by Hand and Vacuum Mixing during Their Polymerization. Acta of Bioengineering and Biomechanics, 11(3), 47–51.
Matuszewski, Ł., Olchowik, G., Mazurkiewicz, T., Kowalczyk, B., Zdrojewska, A., Matuszewska, A., Ciszewski, A., Gospodarek, M., & Morawik, I. (2014). Biomechanical Parameters of the BP-Enriched Bone Cement. European Journal of Orthopaedic Surgery & Traumatology, 24(4), 435–441. https://doi.org/10.1007/s00590-013-1230-1 DOI: https://doi.org/10.1007/s00590-013-1230-1
Pałubicka, A., Czubek, J., & Wekwejt, M. (2019). Effect of Aeration of Antibiotic-Loaded Bone Cement on Its Properties and Bactericidal Effectiveness. Minerva Ortopedica e Traumatologica, 70(2), 78–85. https://doi.org/10.23736/S0394-3410.19.03913-4 DOI: https://doi.org/10.23736/S0394-3410.19.03913-4
Tan, J.H., Koh, B.Th., Ramruttun, A.K., & Wang, W. (2016). Compression and Flexural Strength of Bone Cement Mixed with Blood. Journal of Orthopaedic Surgery (Hong Kong), 24(2), 240–244. https://doi.org/10.1177/1602400223 DOI: https://doi.org/10.1177/1602400223
Tu, Y.-H., Du, J., & Lee, Ch.-H. (2019). Speech Enhancement Based on Teacher–Student Deep Learning Using Improved Speech Presence Probability for Noise-Robust Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(12), 2080-2091. https://doi.org/10.1109/TASLP.2019.2940662 DOI: https://doi.org/10.1109/TASLP.2019.2940662
Wekwejt, M., Michalska-Sionkowska, M., Bartmański, M., Nadolska, M., Łukowicz, K., Pałubicka, A., Osyczka, A.M., & Zieliński, A. (2020). Influence of Several Biodegradable Components Added to Pure and Nanosilver-Doped PMMA Bone Cements on Its Biological and Mechanical Properties. Materials Science and Engineering: C, 117, 111286. https://doi.org/10.1016/j.msec.2020.111286 DOI: https://doi.org/10.1016/j.msec.2020.111286
Wekwejt, M., Moritz, N., Świeczko-Żurek, B., & Pałubicka, A. (2018). Biomechanical Testing of Bioactive Bone Cements – a Comparison of the Impact of Modifiers: Antibiotics and Nanometals. Polymer Testing, 70, 234–243. https://doi.org/10.1016/j.polymertesting.2018.07.014 DOI: https://doi.org/10.1016/j.polymertesting.2018.07.014
Wekwejt, M., Michno, A., Truchan, K., Pałubicka, A., Świeczko-Żurek, B., Osyczka, A.M., & Zieliński, A. (2019). Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. Nanomaterials, 9(8), 1114. doi: https://doi.org/10.3390/nano9081114 DOI: https://doi.org/10.3390/nano9081114
Younesi, M., Bahrololoom, M.E., & Ahmadzadeh, M. (2010). Prediction of Wear Behaviors of Nickel Free Stainless Steel–Hydroxyapatite Bio-Composites Using Artificial Neural Network. Computational Materials Science, 47(3), 645–54.
https://doi.org/10.1016/j.commatsci.2009.09.019 DOI: https://doi.org/10.1016/j.commatsci.2009.09.019
Zhang, W., Cui, X., Finkler, U., Kingsbury, B., Saon, G., Kung, D., & Picheny, M. (2019). Distributed Deep Learning Strategies for Automatic Speech Recognition. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5706–5710). Brighton, United Kingdom: IEEE. DOI: https://doi.org/10.1109/ICASSP.2019.8682888
Article Details
Abstract views: 348
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.