APPLICATION OF ACOUSTIC SIGNAL PROCESSING METHODS IN DETECTING DIFFERENCES BETWEEN OPEN AND CLOSED KINEMATIC CHAIN MOVEMENT FOR THE KNEE JOINT
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
The paper presents results of preliminary research of analysis of signals recorded for open and closed kinematic chain in one volunteer with chondromalacia in both knees. The preliminary research was conducted in order to establish the accuracy of the proposed method and will be used for formulating further research areas. The aim of the paper is to show how FFT, recurrence plots and recurrence quantification analysis (RQA) can help in bioacoustic signals analysis.
Keywords:
References
Adouni, M., & Shirazi-Adl, A. (2009). Knee joint biomechanics in closed-kinetic-chain exercises. Computer Methods in Biomechanics and Biomedical Engineering, 12(6), 661–670. https://doi.org/10.1080/10255840902828375 DOI: https://doi.org/10.1080/10255840902828375
Bączkowicz, D., Kręcisz, K., & Borysiuk, Z. (2019). Analysis of patellofemoral arthrokinematic motion quality in open and closed kinetic chains using vibroarthrography. BMC Musculoskeletal Disorders, 20(1). https://doi.org/10.1186/s12891-019-2429-z DOI: https://doi.org/10.1186/s12891-019-2429-z
Bączkowicz, D., & Majorczyk, E. (2014). Joint motion quality in vibroacoustic signal analysis for patients with patellofemoral joint disorders. BMC Musculoskeletal Disorders, 15, 426. https://doi.org/10.1186/1471-2474-15-426 DOI: https://doi.org/10.1186/1471-2474-15-426
Brinckmann, P., Hoefert, H., & Jongen, H. T. (1981). Sex differences in the skeletal geometry of the human pelvis and hip joint. Journal of Biomechanics, 14(6), 427–430. https://doi.org/10.1016/0021-9290(81)90060-9 DOI: https://doi.org/10.1016/0021-9290(81)90060-9
Chen, Y., & Yang, H. (2012). Multiscale recurrence analysis of long-term nonlinear and nonstationary time series. Chaos, Solitons & Fractals, 45(7), 978–987. https://doi.org/10.1016/j.chaos.2012.03.013 DOI: https://doi.org/10.1016/j.chaos.2012.03.013
Choi, D., Ahn, S., Ryu, J., Nagao, M., & Kim, Y. (2018). Knee Acoustic Emission Characteristics of the Healthy and the Patients with Osteoarthritis Using Piezoelectric Sensor. Sensors and Materials, 30(8), 1629. https://doi.org/10.18494/SAM.2018.1877 DOI: https://doi.org/10.18494/SAM.2018.1877
Gilsanz, V., Boechat, M. I., Gilsanz, R., Loro, M. L., Roe, T. F., & Goodman, W. G. (1994). Gender differences in vertebral sizes in adults: biomechanical implications. Radiology, 190(3), 678–682. https://doi.org/10.1148/radiology.190.3.8115610 DOI: https://doi.org/10.1148/radiology.190.3.8115610
Goodacre, J., Schlueter, D. K., Shark, L.-K., Spain, L., Platt, N., Platt, N., Mercer, J., Waterton, J. C., Bowes, M., Dixon, M., & Huddleston, J. (2018). Identifying Novel Acoustic Emission Biomarkers for Use in Knee Osteoarthritis Clinical Trials. Rheumatology, 57(suppl_3), key075.321. https://doi.org/10.1093/rheumatology/key075.321 DOI: https://doi.org/10.1093/rheumatology/key075.321
Karpiński, R., Jaworski, Ł., Jonak, J., & Krakowski, P. (2019). Stress distribution in the knee joint in relation to tibiofemoral angle using the finite element method. MATEC Web of Conferences, 252, 07007. doi:10.1051/matecconf/201925207007 DOI: https://doi.org/10.1051/matecconf/201925207007
Kim, K. S., Seo, J. H., Kang, J. U., & Song, C. G. (2009). An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Computer Methods and Programs in Biomedicine, 94(2), 198–206. https://doi.org/10.1016/j.cmpb.2008.12.012 DOI: https://doi.org/10.1016/j.cmpb.2008.12.012
Krakowski, P., Gerkowicz, A., Pietrzak, A., Krasowska, D., Jurkiewicz, A., Gorzelak, M., & Schwartz, R. A. (2018). Psoriatic arthritis – new perspectives. Archives of Medical Science. https://doi.org/10.5114/aoms.2018.77725 DOI: https://doi.org/10.5114/aoms.2018.77725
Kręcisz, K., & Bączkowicz, D. (2018). Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals. Computer Methods and Programs in Biomedicine, 154, 37–44. https://doi.org/10.1016/j.cmpb.2017.10.027 DOI: https://doi.org/10.1016/j.cmpb.2017.10.027
Litak, G., Gajewski, J., Syta, A., & Jonak, J. (2008). Quantitative estimation of the tool wear effects in a ripping head by recurrence plots. Journal of Theoretical and Applied Mechanics, 46(3), 521–530.
Litak, G., Syta, A., Gajewski, J., & Jonak, J. (2010). Detecting and identifying non-stationary courses in the ripping head power consumption by recurrence plots. Meccanica, 45(4), 603–608. https://doi.org/10.1007/s11012-009-9265-4 DOI: https://doi.org/10.1007/s11012-009-9265-4
Litak, G., Syta, A., & Rusinek, R. (2011). Dynamical changes during composite milling: recurrence and multiscale entropy analysis. The International Journal of Advanced Manufacturing Technology, 56(5), 445–453. https://doi.org/10.1007/s00170-011-3195-8 DOI: https://doi.org/10.1007/s00170-011-3195-8
Maciejewski, M., Dzierżak, R., Surtel, W., & Saran, T. (2016). Human ECG indicators for fast screening and evaluation. In R. S. Romaniuk (Ed.) (1003131). Presented at the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland. https://doi.org/10.1117/12.2249149 DOI: https://doi.org/10.1117/12.2249149
Maciejewski, M., Surtel, W., & Dzida, G. (2015). Human ECG signal parameters estimation during controlled physical activity. In R. S. Romaniuk (Ed.) (96621P). Presented at the XXXVI Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland. https://doi.org/10.1117/12.2205811 DOI: https://doi.org/10.1117/12.2205811
Maciejewski, M., Surtel, W., Wójcik, W., Masiak, J., Dzida, G., & Horoch, A. (2014). Telemedical systems for home monitoring of patients with chronic conditions in rural environment. Annals of Agricultural and Environmental Medicine, 21(1), 167–173.
Marras, W. S., Jorgensen, M. J., Granata, K. P., & Wiand, B. (2001). Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI.
Clinical Biomechanics, 16(1), 38–46. https://doi.org/10.1016/S0268-0033(00)00046-2 DOI: https://doi.org/10.1016/S0268-0033(00)00046-2
Marwan, N., Carmenromano, M., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5–6), 237–329. https://doi.org/10.1016/j.physrep.2006.11.001 DOI: https://doi.org/10.1016/j.physrep.2006.11.001
Rangayyan, R. M., Oloumi, F., Wu, Y., & Cai, S. (2013). Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomedical Signal Processing and Control, 8(1), 23–29. https://doi.org/10.1016/j.bspc.2012.05.004 DOI: https://doi.org/10.1016/j.bspc.2012.05.004
Shannon, C. E. (1948). A Mathematical Theory of Communication. Reprinted with corrections from The Bell System Technical Journal, 27, 379–423, 623–656. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
Shark, L.-K., Chen, H., & Goodacre, J. (2010). Knee Acoustic Emission: A Clue to Joint Ageing and Failure. Rheumatology, 49, I79–I79.
Shark, L.-K., Chen, H., & Goodacre, J. (2011). Knee acoustic emission: A potential biomarker for quantitative assessment of joint ageing and degeneration. Medical Engineering & Physics, 33(5), 534–545. https://doi.org/10.1016/j.medengphy.2010.12.009 DOI: https://doi.org/10.1016/j.medengphy.2010.12.009
Syta, A., Jonak, J., Jedliński, Ł., & Litak, G. (2012). Failure Diagnosis of a Gear Box by Recurrences. Journal of Vibration and Acoustics, 134(4), 041006. https://doi.org/10.1115/1.4005846 DOI: https://doi.org/10.1115/1.4005846
Takens, F. (1981). Detecting strange attractors in turbulence. In D. Rand & L.-S. Young (Eds.), Dynamical Systems and Turbulence, Warwick 1980 (898, pp. 366–381). Berlin, Heidelberg: Springer. https://doi.org/10.1007/BFb0091924 DOI: https://doi.org/10.1007/BFb0091924
Tool box of recurrence plot and recurrence quantification analysis – File Exchange – MATLAB Central. (2019, March 13). Retrieved from https://www.mathworks.com/matlabcentral/fileexchange/58246-tool-box-of-recurrence-plot-and-recurrence-quantification-analysis
Wiens, A. D., Prahalad, S., & Inan, O. T. (2016). VibroCV: A computer vision-based vibroarthrography platform with possible application to Juvenile idiopathic arthritis. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4431–4434). IEEE. https://doi.org/10.1109/EMBC.2016.7591710 DOI: https://doi.org/10.1109/EMBC.2016.7591710
Wu, Y., Chen, P., Luo, X., Huang, H., Liao, L., Yao, Y., Wu, M., & Rangayyan, R. M. (2016). Quantification of knee vibroarthrographic signal irregularity associated with patellofemoral joint cartilage pathology based on entropy and envelope amplitude measures. Computer Methods and Programs in Biomedicine, 130, 1–12. https://doi.org/10.1016/j.cmpb.2016.03.021 DOI: https://doi.org/10.1016/j.cmpb.2016.03.021
Yang, H. (2011). Multiscale Recurrence Quantification Analysis of Spatial Cardiac Vectorcardiogram Signals. IEEE Transactions on Biomedical Engineering, 58(2), 339–347. https://doi.org/10.1109/TBME.2010.2063704 DOI: https://doi.org/10.1109/TBME.2010.2063704
Zubrzycki, J., Karpiński, R., & Górniak, B. (2016). Computer aided design and structural analysis of the endoprosthesis of the knee joint. Applied Computer Science, 12(2), 84–95.
Article Details
Abstract views: 293
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.