Crupi, V., Epasto, G., & Guglielmino, E. (2013). Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam. Marine Structures, 30, 74–96. https://doi.org/10.1016/J.MARSTRUC.2012.11.002
DOI: https://doi.org/10.1016/j.marstruc.2012.11.002
Estrada, Q., Szwedowicz, D., Rodriguez-Mendez, A., Elías-Espinosa, M., Silva-Aceves, J., BedollaHernández, J., & Gómez-Vargas, O. A. (2019). Effect of radial clearance and holes as crush initiators on the crashworthiness performance of bitubular profiles. Thin-Walled Structures, 140, 43–59. https://doi.org/10.1016/J.TWS.2019.02.039
DOI: https://doi.org/10.1016/j.tws.2019.02.039
Fan, H., Hong, W., Sun, F., Xu, Y., & Jin, F. (2015). Lateral compression behaviors of thin-walled equilateral triangular tubes. International Journal of Steel Structures, 15(4), 785–795. https://doi.org/10.1007/s13296-015-1202-x.
DOI: https://doi.org/10.1007/s13296-015-1202-x
Goel, M. D. (2015). Deformation, energy absorption and crushing behavior of single-, double- and multi-wall foam filled square and circular tubes. Thin-Walled Structures, 90, 1–11. https://doi.org/10.1016/J.TWS.2015.01.004
DOI: https://doi.org/10.1016/j.tws.2015.01.004
Ivañez, I., Fernandez-Cañadas, L. M., & Sanchez-Saez, S. (2017). Compressive deformation and energy-absorption capability of aluminium honeycomb core. Composite Structures, 174, 123–133. https://doi.org/10.1016/J.COMPSTRUCT.2017.04.056
DOI: https://doi.org/10.1016/j.compstruct.2017.04.056
Khan, M. K., Baig, T., & Mirza, S. (2012). Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb. Materials Science and Engineering: A, 539, 135–142. https://doi.org/10.1016/J.MSEA.2012.01.070
DOI: https://doi.org/10.1016/j.msea.2012.01.070
Li, T., & Wang, L. (2017). Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Composite Structures, 175, 46–57. https://doi.org/10.1016/J.COMPSTRUCT.2017.05.001
DOI: https://doi.org/10.1016/j.compstruct.2017.05.001
Liu, Q., Fu, J., Wang, J., Ma, J., Chen, H., Li, Q., & Hui, D. (2017). Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam. Composites Part B: Engineering, 130, 236–247. https://doi.org/10.1016/J.COMPOSITESB.2017.07.041
DOI: https://doi.org/10.1016/j.compositesb.2017.07.041
Smerd, R., Winkler, S., Salisbury, C., Worswick, M., Lloyd, D., & Finn, M. (2005). High strain rate tensile testing of automotive aluminum alloy sheet. International Journal of Impact Engineering, 32(1–4), 541–560. https://doi.org/10.1016/J.IJIMPENG.2005.04.013
DOI: https://doi.org/10.1016/j.ijimpeng.2005.04.013
Yang, X., Sun, Y., Yang, J., & Pan, Q. (2018). Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 125, 1–11. https://doi.org/10.1016/J.TWS.2018.01.014
DOI: https://doi.org/10.1016/j.tws.2018.01.014
Yin, H., Huang, X., Scarpa, F., Wen, G., Chen, Y., & Zhang, C. (2018). In-plane crashworthiness of bio-inspired hierarchical honeycombs. Composite Structures, 192, 516–527. https://doi.org/10.1016/J.COMPSTRUCT.2018.03.050
DOI: https://doi.org/10.1016/j.compstruct.2018.03.050
Wang, Z., Li, Z., & Zhang, X. (2016). Bending resistance of thin-walled multi-cell square tubes. Thin-Walled Structures, 107, 287–299. https://doi.org/10.1016/J.TWS.2016.06.017
DOI: https://doi.org/10.1016/j.tws.2016.06.017
Zhang, Y., Xu, X., Wang, J., Chen, T., & Wang, C. H. (2018). Crushing analysis for novel bio-inspired hierarchical circular structures subjected to axial load. International Journal of Mechanical Sciences, 140, 407–431. https://doi.org/10.1016/J.IJMECSCI.2018.03.015
DOI: https://doi.org/10.1016/j.ijmecsci.2018.03.015
Zhang, X., Zhang, H., & Wang, Z. (2016). Bending collapse of square tubes with variable thickness. International Journal of Mechanical Sciences, 106, 107–116. https://doi.org/10.1016/J.IJMECSCI.2015.12.006
DOI: https://doi.org/10.1016/j.ijmecsci.2015.12.006
Zhu, H., Qin, C., Wang, J. Q., & Qi, F. J. (2011). Characterization and Simulation of Mechanical Behavior of 6063 Aluminum Alloy Thin-Walled Tubes. Advanced Materials Research, 197–198, 1500–1508. https://doi.org/10.4028/www.scientific.net/AMR.197-198.1500
DOI: https://doi.org/10.4028/www.scientific.net/AMR.197-198.1500