DIAGNOSTIC FACTORS FOR OPENED AND CLOSED KINEMATIC CHAIN OF VIBROARTHROGRAPHY SIGNALS
Article Sidebar
Open full text
Issue Vol. 15 No. 3 (2019)
-
UAVS FLIGHT ROUTES OPTIMIZATION IN CHANGING WEATHER CONDITIONS – CONSTRAINT PROGRAMMING APPROACH
Grzegorz RADZKI, Amila THIBBOTUWAWA, Grzegorz BOCEWICZ5-20
-
USING GA FOR EVOLVING WEIGHTS IN NEURAL NETWORKS
Wafaa Mustafa HAMEED, Asan Baker KANBAR21-33
-
DIAGNOSTIC FACTORS FOR OPENED AND CLOSED KINEMATIC CHAIN OF VIBROARTHROGRAPHY SIGNALS
Anna MACHROWSKA, Robert KARPIŃSKI, Przemysław KRAKOWSKI, Józef JONAK34-44
-
FUZZY ASSESSMENT OF MANUFACTURABILITY DESIGN FOR MACHINING
Józef MATUSZEK, Tomasz SENETA, Aleksander MOCZAŁA45-55
-
THE APPLICATION OF FINGERPRINTS AUTHENTICATION IN DISTANCE EDUCATION
Hamid JAN, Beena HAMID56-64
-
USEFULNESS OF RAPID PROTOTYPING IN PLANNING COMPLEX TRAUMA SURGERIES
Przemysław KRAKOWSKI, Józef JONAK, Robert KARPIŃSKI, Łukasz JAWORSKI65-72
-
INEFFICIENCY OF DATA MINING ALGORITHMS AND ITS ARCHITECTURE: WITH EMPHASIS TO THE SHORTCOMING OF DATA MINING ALGORITHMS ON THE OUTPUT OF THE RESEARCHES
Workineh TESEMA73-86
-
APPLICATION OF IMAGE ANALYSIS TO THE IDENTIFICATION OF MASS INERTIA MOMENTUM IN ELECTROMECHANICAL SYSTEM WITH CHANGEABLE BACKLASH ZONE
Marcin TOMCZYK, Anna PLICHTA, Mariusz MIKULSKI87-102
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
The paper presents results of preliminary research of vibroarthrography signals recorded from one healthy volunteer. The tests were carried out for the open and closed kinematic chain in the range of motion 90° - 0° - 90°. Analysis included initial signal filtration using the EMD algorithm. The aim was to investigate the occurrence of differences in the values of selected energy and statistical parameters for the cases studied.
Keywords:
References
Adouni, M., & Shirazi-Adl, A. (2009). Knee joint biomechanics in closed-kinetic-chain exercises. Computer Methods in Biomechanics and Biomedical Engineering, 12(6), 661–670. https://doi.org/10.1080/10255840902828375 DOI: https://doi.org/10.1080/10255840902828375
Alickovic, E., Kevric, J., & Subasi, A. (2018). Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomedical Signal Processing and Control, 39, 94–102. https://doi.org/10.1016/j.bspc.2017.07.022 DOI: https://doi.org/10.1016/j.bspc.2017.07.022
Barcellona, M. G., & Morrissey, M. C. (2016). The effect of open kinetic chain knee extensor resistance training at different training loads on anterior knee laxity in the uninjured. Manual Therapy, 22, 1–8. https://doi.org/10.1016/j.math.2015.12.011 DOI: https://doi.org/10.1016/j.math.2015.12.011
Charnley, J. (1955). Kinesiology of the human body under normal and pathological conditions. The Journal of Bone and Joint Surgery. British Volume, 37–B(4), 736–737. https://doi.org/10.1302/0301-620X.37B4.736 DOI: https://doi.org/10.1302/0301-620X.37B4.736
Cohen, Z. A., Roglic, H., Grelsamer, R. P., Henry, J. H., Levine, W. N., Van Mow, C., & Ateshian, G. A. (2001). Patellofemoral Stresses during Open and Closed Kinetic Chain Exercises: An Analysis Using Computer Simulation. The American Journal of Sports Medicine, 29(4), 480–487. https://doi.org/10.1177/03635465010290041701 DOI: https://doi.org/10.1177/03635465010290041701
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-Ch., Tung, Ch. Ch., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193 DOI: https://doi.org/10.1098/rspa.1998.0193
Jonak, J., Machrowska, A., Podgórski, J., & Bęc, J. (2016). Identification of the operating parameters for the mechanical systeIdentification system using EMD algorithm. MATEC Web of Conferences, 83, 05001. https://doi.org/10.1051/matecconf/20168305001 DOI: https://doi.org/10.1051/matecconf/20168305001
Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03
Kolotkov, D. Y., Anfinogentov, S. A., & Nakariakov, V. M. (2016). Empirical mode decomposition analysis of random processes in the solar atmosphere. Astronomy & Astrophysics, 592, A153. https://doi.org/10.1051/0004-6361/201628306 DOI: https://doi.org/10.1051/0004-6361/201628306
Luque-Seron, J. A., & Medina-Porqueres, I. (2016). Anterior Cruciate Ligament Strain In Vivo: A Systematic Review. Sports Health: A Multidisciplinary Approach, 8(5), 451–455. https://doi.org/10.1177/1941738116658006 DOI: https://doi.org/10.1177/1941738116658006
Machrowska, A., & Jonak, J. (2018). xEMD procedures as a data – Assisted filtering method. AIP Conference Proceedings, 1922, 120007. https://doi.org/10.1063/1.5019122 DOI: https://doi.org/10.1063/1.5019122
Maciejewski, M. (2015). Zastosowanie i ograniczenia technologii informacyjnych w diagnostyce medycznej. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 1, 66–72. DOI: https://doi.org/10.5604/20830157.1148052
Maciejewski, M., Surtel, W., & Dzida, G. (2015). Human ECG signal parameters estimation during controlled physical activity. In R. S. Romaniuk (Ed.), Proc. SPIE 9662, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (96621P ). https://doi.org/10.1117/12.2205811 DOI: https://doi.org/10.1117/12.2205811
Powers, C. M., Bolgla, L. A., Callaghan, M. J., Collins, N., & Sheehan, F. T. (2012). Patellofemoral Pain: Proximal, Distal, and Local Factors—2nd International Research Retreat, August 31–September 2, 2011, Ghent, Belgium. Journal of Orthopaedic & Sports Physical Therapy, 42(6), A1–A54. https://doi.org/10.2519/jospt.2012.0301 DOI: https://doi.org/10.2519/jospt.2012.0301
Sanchis-Alfonso, V. (2014). Holistic approach to understanding anterior knee pain. Clinical implications. Knee Surgery, Sports Traumatology, Arthroscopy, 22(10), 2275–2285. https://doi.org/10.1007/s00167-014-3011-8 DOI: https://doi.org/10.1007/s00167-014-3011-8
Sanchis-Alfonso, V., & Dye, S. F. (2017). How to Deal With Anterior Knee Pain in the Active Young Patient. Sports Health: A Multidisciplinary Approach, 9(4), 346–351. https://doi.org/10.1177/1941738116681269 DOI: https://doi.org/10.1177/1941738116681269
Witvrouw, E., Danneels, L., van Tiggelen, D., Willems, T. M., & Cambier, D. (2004). Open versus Closed Kinetic Chain Exercises in Patellofemoral Pain: A 5-Year Prospective Randomized Study. The American Journal of Sports Medicine, 32(5), 1122–1130. https://doi.org/10.1177/0363546503262187 DOI: https://doi.org/10.1177/0363546503262187
Yaslan, Y., & Bican, B. (2017). Empirical mode decomposition based denoising method with support vector regression for time series prediction: A case study for electricity load forecasting. Measurement, 103, 52–61. https://doi.org/10.1016/j.measurement.2017.02.007 DOI: https://doi.org/10.1016/j.measurement.2017.02.007
Article Details
Abstract views: 244
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
