Agrawal, R., & Srikant, R. (2015). Fast algorithms for mining association rules. In Proc. of the 20th International Conference on Very Large Data Bases (VLDB) (pp. 487–499). Santiago, Chile.
Al-Khoder, A., & Harmouch, H. (2015). Evaluating Four Of The most Popular Open Source and Free Data Mining Tools. International Journal of Academic Scientific Research, 3(10), 13–23.
Bavisi, S., Mehta, J., & Lopes, L. (2014). A Comparative Study of Different Data Mining Algorithms. International Journal of Current Engineering and Technology, 4(5), 3248–3252.
Gulli, A., & Pal, S. (2017). Deep Learning with Keras-Implement neural networks with Keras on Theano and Tensor Flow. Birmingham, UK: Packt Publishing.
Huang, H. C., & Hou, C. I. (2017). Tourism Demand Forecasting Model Using Neural Network. International Journal of Computer Science & Information Technology (IJCSIT), 9(2), 19–29.
DOI: https://doi.org/10.5121/ijcsit.2017.9202
Joseph, S. R., Hlomani, H., & Letsholo, K. (2016). Data Mining Algorithms: An Overview. International journal of Computers and Technology, 15(6), 6806–6813.
DOI: https://doi.org/10.24297/ijct.v15i6.1615
Kalyani, J., Bharathi, H. N., & Rao, J. (2016) Stock Trend Prediction Using News Sentiment Analysis, International Journal of Computer Science & Information Technology (IJCSIT), 8(3), 67–76.
DOI: https://doi.org/10.5121/ijcsit.2016.8306
Kotu, V., & Deshpande, B. (2015). Predictive Analytics and Data Mining – Concepts and Practice with RapidMiner. Elsevier.
DOI: https://doi.org/10.1016/B978-0-12-801460-8.00013-6
Kumbhare, T. A., & Chobe, S. V. (2014) An Overview of Association Rule Mining Algorithms. International Journal of Computer Science and Information Technologies, 5(1), 927–930.
Massaro, A., Barbuzzi, D., Vitti, V., Galiano, A., Aruci, M., & Pirlo, G. (2016), Predictive Sales Analysis According to the Effect of Weather. In Proceeding of the 2nd International Conference on Recent Trends and Applications in Computer Science and Information Technology (pp. 53–55). Tirana, Albania.
Massaro, A., Galiano, A., Barbuzzi, D., Pellicani, L., Birardi, G., Romagno, D. D., & Frulli, L., (2017). Joint Activities of Market Basket Analysis and Product Facing for Business Intelligence oriented on Global Distribution Market: examples of data mining applications. International Journal of Computer Science and Information Technologies, 8(2), 178–183.
Massaro, A., Maritati, V., & Galiano, A. (2018). Data Mining Model Performance of Sales Predictive Algorithms Based On Rapidminer Workflows. International Journal of Computer Science & Information Technology (IJCSIT), 10 (3) 39–56. https://doi.org/10.5121/ijcsit.2018.10303
DOI: https://doi.org/10.5121/ijcsit.2018.10303
Negandhi, G. (2007). Apriori Algorithm Review for Finals (SE 157B). Spring Semester. Nguyen, H.-L., Woon, Y. K., & Ng, W. K. (2015). A Survey on Data Stream Clustering and Classification. Knowledge and Information Systems, 45(3), 535–569. https://doi.org/10.1007/s10115-014-0808-1
DOI: https://doi.org/10.1007/s10115-014-0808-1
Otha, M., & Higuci, Y. (2013). Study on Design of Supermarket Store Layouts: the Principle of Sales Magnet, World Academy of Science. Engineering and Technology, 7(1), 209–212.
Ozisikyilmaz, B. (2009). Analysis, Characterization and Design of Data Mining Applications and Applications to Computer Architecture (Unpublished doctoral dissertation). Northwestern University, Evanston, Illinois.
Rehman, N. (2017). Data Mining Techniques Methods Algorithms and Tools. International of Computer Science and Mobile Computing, 6(7), 227–231.
Shneiderman, B. (2003). Inventing discovery tools: Combining information visualization with data mining. In The Craft of Information Visualization Readings and Reflections Interactive Technologies (pp.378-385). Morgan Kaufmann. https://doi.org/10.1016/B978-155860915-0/50048-2
DOI: https://doi.org/10.1016/B978-155860915-0/50048-2
Štulec, I., Petljak, K., & Kukor, A. (2016). The Role of Store Layout and Visual Merchandising in Food Retailing. European Journal of Economics and Business Studies, 4(1), 139–152.
DOI: https://doi.org/10.26417/ejes.v4i1.p138-151
Swarndeep Saket, J., & Pandya, S. (2016). An Overview of Partitioning Algorithms in Clustering Techniques. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 5(6), 1943–1946.
Talia, D., Trunfio, P., & Marozzo, F. (2016). Data Analysis in the Cloud: Models and Techniques for Cloud-Based Data Analysis. Elsevier Science.
DOI: https://doi.org/10.1016/B978-0-12-802881-0.00003-2
Wimmer, H., & Powell, L. M. (2015) A Comparison of Open Source Tools for Data Science, In Proceedings of the Conference on Information Systems Applied Research (v8 n3651). Wilmington, North Carolina USA.
Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z.-H., Steinbach, M., Hand, D. J., & Steinberg, D. (2007). Top 10 algorithms in data mining. London, UK: Springer-Verlag London Limited.
DOI: https://doi.org/10.1007/s10115-007-0114-2
Xu, D., & Tian, Y. (2015). A Comprehensive Survey of Clustering Algorithms. Annals of Data Science, 2(2), 165–193. doi:10.1007/s40745-015-0040-1
DOI: https://doi.org/10.1007/s40745-015-0040-1
Yadav, Ch., Wang, S., & Kumar, M. (2013) Algorithm and approaches to handle large Data-A Survey, International Journal of Computer Science and Network, 2(3), 1307.5437.
Zafarani, R., Abbasi, M., & Liu, H. (2014). Social Media Mining. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139088510
DOI: https://doi.org/10.1017/CBO9781139088510