THE SPECTROPHOTOMETRIC ANALYSIS OF ANTIOXIDANT PROPERTIES OF SELECTED HERBS IN VISION-PRO™ UV-VIS
Article Sidebar
Open full text
Main Article Content
DOI
Authors
karolina.ferysiuk@student.up.edu.pl
Abstract
The aim of the study was to evaluate the influence of type of the solvent (water, aqueous ethanol and ethanol) on the antioxidant properties of four various herbs: couch grass (A. repens), milk thistle (S. marianum), dandelion (T. officinale) and fireweed (E. angustifolium) measurement by three common UV-VIS methods (TPC, ABTS+, DPPH). The results were collected through the Vision-Pro™ UV-VIS spectrophotometer software. Aqueous ethanol was the most effective solvent for extraction for all type of herbs. Fireweed contains the highest amount of polyphenol compounds (0.625 µg GA/ml). The lowest antioxidant capacity was presented by extracts from couch grass (0.019 µg GA/ml).
Keywords:
References
Alam, Md. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21, 143–152. https://doi.org/10.1016/j.jsps.2012.05.002 DOI: https://doi.org/10.1016/j.jsps.2012.05.002
Al-Snafi, A. E. (2015). Chemical constituents and pharmacological importance of Agropyron repens – A review. Research Journal of Pharmacology and Toxicology, 01(02), 3741.
Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11, 419–421. https://doi.org/10.1016/S0924-2244(01)00027-9 DOI: https://doi.org/10.1016/S0924-2244(01)00027-9
Badarinath, A. V., Mallikarjuna Rao, K., Madhu Sudhana Chetty, C., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276‒1285.
Barreto, J. F. A., Wallace, S. N., Carrier, D. J., & Clausen, E. C. (2003). Extraction of Nutraceuticals from Milk Thistle I. Hot Water Extraction. Applied Biochemistry and Biotechnology, 108(1-3), 881-889. doi:10.1385/ABAB:108:1-3:881 DOI: https://doi.org/10.1385/ABAB:108:1-3:881
Biswas, A. K., Sahoo, J., & Chatli, M. K. (2011). A simple UV-Vis spectrophotometric method for determination of b-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT – Food Science and Technology, 44, 1809‒1813. https://doi.org/10.1016/j.lwt.2011.03.017 DOI: https://doi.org/10.1016/j.lwt.2011.03.017
Chambers, Ch. S., Holečková, V., Petrásková, L., Biedermann, D., Valentová, K., Buchta, M., & Křen, V. (2017). The silymarin composition and why does it matter??? Food Research International, 100, 339–353. doi:10.1016/j.foodres.2017.07.017 DOI: https://doi.org/10.1016/j.foodres.2017.07.017
Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Merillon, J.-M. (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC. Assays. J. Agric. Food Chem., 57, 1768–1774. https://doi.org/10.1021/jf803011r DOI: https://doi.org/10.1021/jf803011r
Elwekeel, A., Elfishawy, A., & AbouZid, S. (2013). Silymarin content in Silybum marianum fruits at different maturity stages. Journal of Medicinal Plants Research, 7(23), 16651669. https://doi.org/10.5897/JMPR12.0743
Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022 DOI: https://doi.org/10.1016/j.foodres.2014.06.022
Friebe, A., Schulz, M., Kock, P., & Schnabl, H. (1995). Phytotoxins from shoot extracts and root exudates of agropyron repens seedlings. Phytochemistry, 38(5), 11571159. https://doi.org/10.1016/0031-9422(94)00795-U DOI: https://doi.org/10.1016/0031-9422(94)00795-U
Ghaima, K. K., Hashim, N. M., & Ali, S. A. (2013). Antibacterial and antioxidant activities of ethyl acetate extract of nettle (Urtica dioica) and dandelion (Taraxacum officinale). Journal of Applied Pharmaceutical Science, 3(05), 096-099. https://doi.org/10.7324/JAPS.2013.3518
Granica, S., Piwowarski, J. P., Czerwińska, M. E., & Kiss, A. K. (2014). Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. Journal of Ethnopharmacology, 156, 316–346. https://doi.org/10.1016/j.jep.2014.08.036 DOI: https://doi.org/10.1016/j.jep.2014.08.036
Grujic, N., Lepojevic, Z., Srdjenovic, B., Vladic, J., & Sudji, J. (2012). Effects of Different Extraction Methods and Conditions on the Phenolic Composition of Mate Tea Extracts. Molecules, 17(3), 2518-1528. https://doi.org/10.3390/molecules17032518 DOI: https://doi.org/10.3390/molecules17032518
Gupta, A., Naraniwal, M., & Kothari, V. (2012). Modern extraction methods for preparation of bioactive plant extracts. International Journal of Applied and Natural Science, 1(1), 8–26.
Hinneburg, I., Damien Dorman, H. J., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97, 122129. https://doi.org/10.1016/j.foodchem.2005.03.028 DOI: https://doi.org/10.1016/j.foodchem.2005.03.028
Hung, Y., de Kok, T. M., & Verbeke, W. (2016). Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite. Meat Science Volume, 121, 119126. https://doi.org/10.1016/j.meatsci.2016.06.002 DOI: https://doi.org/10.1016/j.meatsci.2016.06.002
Ignat, I., Volf, I., & Popa, V. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4), 18211835.
https://doi.org/10.1016/j.foodchem.2010.12.026 DOI: https://doi.org/10.1016/j.foodchem.2010.12.026
Ivanov, I. G. (2014). Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. International Journal of Pharmacognosy and Phytochemical Research 2014-15, 6(4), 889893.
Jung, S., Choe, J. Ch., Kim, B., Yun, H., Kruk, Z. A., & Jo, Ch. (2010). Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Science, 86(2), 520–526. https://doi.org/10.1016/j.meatsci.2010.06.007 DOI: https://doi.org/10.1016/j.meatsci.2010.06.007
Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of methods to determine antioxidant capacities. Food Analytical Methods, 2, 41–60. https://doi.org/10.1007/s12161-008-9067-7 DOI: https://doi.org/10.1007/s12161-008-9067-7
Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1 DOI: https://doi.org/10.1007/s13197-011-0251-1
Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., & Delgado-Adámez, J. (2017). Phenolic compounds. Biological Activity. Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging, In M. Soto-Hernandez, M. PalmaTenango & M. del Rosario Garcia-Mateos (Eds.), Phenolic Compounds – Biological Activity (pp. 3958). IntechOpen. https://doi.org/10.5772/66885 DOI: https://doi.org/10.5772/66885
Moniruzzaman, M., Khalil, M. I., Sulaiman, S. A., & Gan, S. H. (2012). Advances in the analytical methods for determining the antioxidant properties of honey: a review. African Journal of Traditional, Complementary and Alternative Medicines, 9(1), 36‒42. https://doi.org/10.4314/ajtcam.v9i1.5 DOI: https://doi.org/10.4314/ajtcam.v9i1.5
Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57, 1655–1666. https://doi.org/10.1021/jf803537k DOI: https://doi.org/10.1021/jf803537k
Naczka, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography, 1054(1–2), 95111. https://doi.org/10.1016/j.chroma.2004.08.059 DOI: https://doi.org/10.1016/S0021-9673(04)01409-8
Onar, H. C., Yusufoglu, A., Turker, G., & Yanardag, R. (2012). Elastase, tyrosinase and lipoxygenase inhibition and antioxidant activity of an aqueous extract from Epilobium angustifolium L. leaves). Journal of Medicinal Plants Research, 6(5), 716726. https://doi.org/10.5897/JMPR11.1127 DOI: https://doi.org/10.5897/JMPR11.1127
Oroian, M., & Escriche, I. (2015) Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10–36. https://doi.org/10.1016/j.foodres.2015.04.018 DOI: https://doi.org/10.1016/j.foodres.2015.04.018
Ostrovska, H., Oleshchuk, O., Vannini, S., Cataldi, S., Albi, E., Codini, M., Moulas, A., Marchyshyn, S., Beccari, T., & Ceccarini, M. R. (2017). Epilobium angustifolium L.: A medicinal plant with therapeutic properties. European Biotechnology Thematic Network Association, 1(2), 126131. https://doi.org/10.24190/ISSN2564-615X/2017/02.03 DOI: https://doi.org/10.24190/ISSN2564-615X/2017/02.03
Pérez-Jiménez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39, 791–800. https://doi.org/10.1016/j.foodres.2006.02.003 DOI: https://doi.org/10.1016/j.foodres.2006.02.003
Rodríguez-Rojo, S., Visentin, A., Maestri, D., & Cocero, M. J. (2012). Assisted extraction of rosemary antioxidants with green solvents. Journal of Food Engineering, 109(1), 98103. https://doi.org/10.1016/j.jfoodeng.2011.09.029 DOI: https://doi.org/10.1016/j.jfoodeng.2011.09.029
Schepetkin, I. A., Ramstead, A. G., Kirpotina, L. N., Voyich, J. M., Jutila, M. A., & Quinn, M. T. (2016). Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed). Phytotherapy Research, 30, 1287–1297. https://doi.org/10.1002/ptr.5648 DOI: https://doi.org/10.1002/ptr.5648
Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., & Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Science, 22(1),102106.
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of functional foods, 18, 820 – 897. https://doi.org/10.1016/j.jff.2015.06.018 DOI: https://doi.org/10.1016/j.jff.2015.06.018
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional foods, 18, 757–781. DOI: https://doi.org/10.1016/j.jff.2015.01.047
Shalaby, E. A., & Shanab, S. M. M. (2013). Compraison of DPPH and ABTS assays for determining antioxidant potential of water and methanol of Spirulina platensis. Indian Journal of GeoMarine Sciences, 42(5), 556-564.
Shirazi, O. U., Khattak, M. M. A. K., Shukri, N. A. M., & Nasyriq, M. N. (2014). Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. Journal of Pharmacognosy and Phytochemistry, 3(3), 104‒108.
Singh, S., & Singh, R. P. (2008). In Vitro Methods of Assay of Antioxidants: An Overview. Food Reviews International, 24(4), 392-415. https://doi.org/10.1080/87559120802304269 DOI: https://doi.org/10.1080/87559120802304269
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
Skotti, E., Anastasaki, E., Kanellou, G., Polissiou, M., & Tarantilis, P. A. (2014). Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Industrial Crops and Products, 53, 46–54. https://doi.org/10.1016/j.indcrop.2013.12.013 DOI: https://doi.org/10.1016/j.indcrop.2013.12.013
Sochor, J., Ryvolova, M., Krystofova, O., Salas, P., Hubalek, J., Adam, V., Trnkova, L., Havel, L., Beklova, M., Zehnalek, J., Provaznik, I., & Kizek, R. (2010). Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages. Molecules, 15, 8618‒8640. https://doi.org/10.3390/molecules15128618 DOI: https://doi.org/10.3390/molecules15128618
Soleimani, V., Delghandi, P. S., Moallem, S. A., & Karimi, G. (2019). Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytotherapy Research, 33, 1627–1638. https://doi.org/10.1002/ptr.6361 DOI: https://doi.org/10.1002/ptr.6361
Thaipong, K., Boonprakob, U., Crosbyb, K., Cisneros-Zevallosc, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003 DOI: https://doi.org/10.1016/j.jfca.2006.01.003
Wendakoon, Ch., Calderon, P., & Gagnon, D. (2012). Evaluation of Selected Medicinal Plants Extracted in Different Ethanol Concentrations for Antibacterial Activity against Human Pathogens. Journal of Medicinally Active Plants, 1(2),6068. https://doi.org/10.7275/R5GH9FV2
Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940–949. https://doi.org/10.1016/j.foodchem.2007.04.038 DOI: https://doi.org/10.1016/j.foodchem.2007.04.038
Yu, J., Wang, H., Zhan, J., & Huang, W. (2018). Review of recent UV–Vis and infrared spectroscopy researches on wine detection and discrimination. Applied Spectroscopy Reviews, 53(1), 65‒86. https://doi.org/10.1080/05704928.2017.1352511 DOI: https://doi.org/10.1080/05704928.2017.1352511
Article Details
Abstract views: 224
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.