THE SPECTROPHOTOMETRIC ANALYSIS OF ANTIOXIDANT PROPERTIES OF SELECTED HERBS IN VISION-PRO™ UV-VIS

Karolina FERYSIUK

karolina.ferysiuk@student.up.edu.pl
University of Life Sciences in Lublin, Faculty of Food Science and Biotechnology, Department of Animals Raw Materials Technology, Skromna 8 Street, 20-704 Lublin (Poland)

Karolina M. WÓJCIAK


University of Life Sciences in Lublin, Faculty of Food Science and Biotechnology, Department of Animals Raw Materials Technology, Skromna 8 Street, 20-704 Lublin (Poland)

Abstract

The aim of the study was to evaluate the influence of type of the solvent (water, aqueous ethanol and ethanol) on the antioxidant properties of four various herbs: couch grass (A. repens), milk thistle (S. marianum), dandelion (T. officinale) and fireweed (E. angustifolium) measurement by three common UV-VIS methods (TPC, ABTS+, DPPH). The results were collected through the Vision-Pro™ UV-VIS spectrophotometer software. Aqueous ethanol was the most effective solvent for extraction for all type of herbs. Fireweed contains the highest amount of polyphenol compounds (0.625 µg GA/ml). The lowest antioxidant capacity was presented by extracts from couch grass (0.019 µg GA/ml).


Keywords:

herb extract, phenolic compounds, antioxidant capacity, VisionPro™ software

Alam, Md. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21, 143–152. https://doi.org/10.1016/j.jsps.2012.05.002
DOI: https://doi.org/10.1016/j.jsps.2012.05.002   Google Scholar

Al-Snafi, A. E. (2015). Chemical constituents and pharmacological importance of Agropyron repens – A review. Research Journal of Pharmacology and Toxicology, 01(02), 3741.
  Google Scholar

Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11, 419–421. https://doi.org/10.1016/S0924-2244(01)00027-9
DOI: https://doi.org/10.1016/S0924-2244(01)00027-9   Google Scholar

Badarinath, A. V., Mallikarjuna Rao, K., Madhu Sudhana Chetty, C., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A Review on In-vitro antioxidant Methods: Comparisions, Correlations and Considerations. International Journal of PharmTech Research, 2(2), 1276‒1285.
  Google Scholar

Barreto, J. F. A., Wallace, S. N., Carrier, D. J., & Clausen, E. C. (2003). Extraction of Nutraceuticals from Milk Thistle I. Hot Water Extraction. Applied Biochemistry and Biotechnology, 108(1-3), 881-889. doi:10.1385/ABAB:108:1-3:881
DOI: https://doi.org/10.1385/ABAB:108:1-3:881   Google Scholar

Biswas, A. K., Sahoo, J., & Chatli, M. K. (2011). A simple UV-Vis spectrophotometric method for determination of b-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT – Food Science and Technology, 44, 1809‒1813. https://doi.org/10.1016/j.lwt.2011.03.017
DOI: https://doi.org/10.1016/j.lwt.2011.03.017   Google Scholar

Chambers, Ch. S., Holečková, V., Petrásková, L., Biedermann, D., Valentová, K., Buchta, M., & Křen, V. (2017). The silymarin composition and why does it matter??? Food Research International, 100, 339–353. doi:10.1016/j.foodres.2017.07.017
DOI: https://doi.org/10.1016/j.foodres.2017.07.017   Google Scholar

Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., & Merillon, J.-M. (2009). Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC. Assays. J. Agric. Food Chem., 57, 1768–1774. https://doi.org/10.1021/jf803011r
DOI: https://doi.org/10.1021/jf803011r   Google Scholar

Elwekeel, A., Elfishawy, A., & AbouZid, S. (2013). Silymarin content in Silybum marianum fruits at different maturity stages. Journal of Medicinal Plants Research, 7(23), 16651669. https://doi.org/10.5897/JMPR12.0743
  Google Scholar

Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022
DOI: https://doi.org/10.1016/j.foodres.2014.06.022   Google Scholar

Friebe, A., Schulz, M., Kock, P., & Schnabl, H. (1995). Phytotoxins from shoot extracts and root exudates of agropyron repens seedlings. Phytochemistry, 38(5), 11571159. https://doi.org/10.1016/0031-9422(94)00795-U
DOI: https://doi.org/10.1016/0031-9422(94)00795-U   Google Scholar

Ghaima, K. K., Hashim, N. M., & Ali, S. A. (2013). Antibacterial and antioxidant activities of ethyl acetate extract of nettle (Urtica dioica) and dandelion (Taraxacum officinale). Journal of Applied Pharmaceutical Science, 3(05), 096-099. https://doi.org/10.7324/JAPS.2013.3518
  Google Scholar

Granica, S., Piwowarski, J. P., Czerwińska, M. E., & Kiss, A. K. (2014). Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. Journal of Ethnopharmacology, 156, 316–346. https://doi.org/10.1016/j.jep.2014.08.036
DOI: https://doi.org/10.1016/j.jep.2014.08.036   Google Scholar

Grujic, N., Lepojevic, Z., Srdjenovic, B., Vladic, J., & Sudji, J. (2012). Effects of Different Extraction Methods and Conditions on the Phenolic Composition of Mate Tea Extracts. Molecules, 17(3), 2518-1528. https://doi.org/10.3390/molecules17032518
DOI: https://doi.org/10.3390/molecules17032518   Google Scholar

Gupta, A., Naraniwal, M., & Kothari, V. (2012). Modern extraction methods for preparation of bioactive plant extracts. International Journal of Applied and Natural Science, 1(1), 8–26.
  Google Scholar

Hinneburg, I., Damien Dorman, H. J., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97, 122129. https://doi.org/10.1016/j.foodchem.2005.03.028
DOI: https://doi.org/10.1016/j.foodchem.2005.03.028   Google Scholar

Hung, Y., de Kok, T. M., & Verbeke, W. (2016). Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite. Meat Science Volume, 121, 119126. https://doi.org/10.1016/j.meatsci.2016.06.002
DOI: https://doi.org/10.1016/j.meatsci.2016.06.002   Google Scholar

Ignat, I., Volf, I., & Popa, V. I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4), 18211835.
  Google Scholar

https://doi.org/10.1016/j.foodchem.2010.12.026
DOI: https://doi.org/10.1016/j.foodchem.2010.12.026   Google Scholar

Ivanov, I. G. (2014). Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg (Dandelion) Leaves. International Journal of Pharmacognosy and Phytochemical Research 2014-15, 6(4), 889893.
  Google Scholar

Jung, S., Choe, J. Ch., Kim, B., Yun, H., Kruk, Z. A., & Jo, Ch. (2010). Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Science, 86(2), 520–526. https://doi.org/10.1016/j.meatsci.2010.06.007
DOI: https://doi.org/10.1016/j.meatsci.2010.06.007   Google Scholar

Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of methods to determine antioxidant capacities. Food Analytical Methods, 2, 41–60. https://doi.org/10.1007/s12161-008-9067-7
DOI: https://doi.org/10.1007/s12161-008-9067-7   Google Scholar

Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1
DOI: https://doi.org/10.1007/s13197-011-0251-1   Google Scholar

Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., & Delgado-Adámez, J. (2017). Phenolic compounds. Biological Activity. Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging, In M. Soto-Hernandez, M. PalmaTenango & M. del Rosario Garcia-Mateos (Eds.), Phenolic Compounds – Biological Activity (pp. 3958). IntechOpen. https://doi.org/10.5772/66885
DOI: https://doi.org/10.5772/66885   Google Scholar

Moniruzzaman, M., Khalil, M. I., Sulaiman, S. A., & Gan, S. H. (2012). Advances in the analytical methods for determining the antioxidant properties of honey: a review. African Journal of Traditional, Complementary and Alternative Medicines, 9(1), 36‒42. https://doi.org/10.4314/ajtcam.v9i1.5
DOI: https://doi.org/10.4314/ajtcam.v9i1.5   Google Scholar

Moon, J.-K., & Shibamoto, T. (2009). Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry, 57, 1655–1666. https://doi.org/10.1021/jf803537k
DOI: https://doi.org/10.1021/jf803537k   Google Scholar

Naczka, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. Journal of Chromatography, 1054(1–2), 95111. https://doi.org/10.1016/j.chroma.2004.08.059
DOI: https://doi.org/10.1016/S0021-9673(04)01409-8   Google Scholar

Onar, H. C., Yusufoglu, A., Turker, G., & Yanardag, R. (2012). Elastase, tyrosinase and lipoxygenase inhibition and antioxidant activity of an aqueous extract from Epilobium angustifolium L. leaves). Journal of Medicinal Plants Research, 6(5), 716726. https://doi.org/10.5897/JMPR11.1127
DOI: https://doi.org/10.5897/JMPR11.1127   Google Scholar

Oroian, M., & Escriche, I. (2015) Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10–36. https://doi.org/10.1016/j.foodres.2015.04.018
DOI: https://doi.org/10.1016/j.foodres.2015.04.018   Google Scholar

Ostrovska, H., Oleshchuk, O., Vannini, S., Cataldi, S., Albi, E., Codini, M., Moulas, A., Marchyshyn, S., Beccari, T., & Ceccarini, M. R. (2017). Epilobium angustifolium L.: A medicinal plant with therapeutic properties. European Biotechnology Thematic Network Association, 1(2), 126131. https://doi.org/10.24190/ISSN2564-615X/2017/02.03
DOI: https://doi.org/10.24190/ISSN2564-615X/2017/02.03   Google Scholar

Pérez-Jiménez, J., & Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 39, 791–800. https://doi.org/10.1016/j.foodres.2006.02.003
DOI: https://doi.org/10.1016/j.foodres.2006.02.003   Google Scholar

Rodríguez-Rojo, S., Visentin, A., Maestri, D., & Cocero, M. J. (2012). Assisted extraction of rosemary antioxidants with green solvents. Journal of Food Engineering, 109(1), 98103. https://doi.org/10.1016/j.jfoodeng.2011.09.029
DOI: https://doi.org/10.1016/j.jfoodeng.2011.09.029   Google Scholar

Schepetkin, I. A., Ramstead, A. G., Kirpotina, L. N., Voyich, J. M., Jutila, M. A., & Quinn, M. T. (2016). Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed). Phytotherapy Research, 30, 1287–1297. https://doi.org/10.1002/ptr.5648
DOI: https://doi.org/10.1002/ptr.5648   Google Scholar

Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., & Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Science, 22(1),102106.
  Google Scholar

Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. Journal of functional foods, 18, 820 – 897. https://doi.org/10.1016/j.jff.2015.06.018
DOI: https://doi.org/10.1016/j.jff.2015.06.018   Google Scholar

Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional foods, 18, 757–781.
DOI: https://doi.org/10.1016/j.jff.2015.01.047   Google Scholar

Shalaby, E. A., & Shanab, S. M. M. (2013). Compraison of DPPH and ABTS assays for determining antioxidant potential of water and methanol of Spirulina platensis. Indian Journal of GeoMarine Sciences, 42(5), 556-564.
  Google Scholar

Shirazi, O. U., Khattak, M. M. A. K., Shukri, N. A. M., & Nasyriq, M. N. (2014). Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices. Journal of Pharmacognosy and Phytochemistry, 3(3), 104‒108.
  Google Scholar

Singh, S., & Singh, R. P. (2008). In Vitro Methods of Assay of Antioxidants: An Overview. Food Reviews International, 24(4), 392-415. https://doi.org/10.1080/87559120802304269
DOI: https://doi.org/10.1080/87559120802304269   Google Scholar

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
  Google Scholar

Skotti, E., Anastasaki, E., Kanellou, G., Polissiou, M., & Tarantilis, P. A. (2014). Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Industrial Crops and Products, 53, 46–54. https://doi.org/10.1016/j.indcrop.2013.12.013
DOI: https://doi.org/10.1016/j.indcrop.2013.12.013   Google Scholar

Sochor, J., Ryvolova, M., Krystofova, O., Salas, P., Hubalek, J., Adam, V., Trnkova, L., Havel, L., Beklova, M., Zehnalek, J., Provaznik, I., & Kizek, R. (2010). Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages. Molecules, 15, 8618‒8640. https://doi.org/10.3390/molecules15128618
DOI: https://doi.org/10.3390/molecules15128618   Google Scholar

Soleimani, V., Delghandi, P. S., Moallem, S. A., & Karimi, G. (2019). Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytotherapy Research, 33, 1627–1638. https://doi.org/10.1002/ptr.6361
DOI: https://doi.org/10.1002/ptr.6361   Google Scholar

Thaipong, K., Boonprakob, U., Crosbyb, K., Cisneros-Zevallosc, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669–675. https://doi.org/10.1016/j.jfca.2006.01.003
DOI: https://doi.org/10.1016/j.jfca.2006.01.003   Google Scholar

Wendakoon, Ch., Calderon, P., & Gagnon, D. (2012). Evaluation of Selected Medicinal Plants Extracted in Different Ethanol Concentrations for Antibacterial Activity against Human Pathogens. Journal of Medicinally Active Plants, 1(2),6068. https://doi.org/10.7275/R5GH9FV2
  Google Scholar

Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940–949. https://doi.org/10.1016/j.foodchem.2007.04.038
DOI: https://doi.org/10.1016/j.foodchem.2007.04.038   Google Scholar

Yu, J., Wang, H., Zhan, J., & Huang, W. (2018). Review of recent UV–Vis and infrared spectroscopy researches on wine detection and discrimination. Applied Spectroscopy Reviews, 53(1), 65‒86. https://doi.org/10.1080/05704928.2017.1352511
DOI: https://doi.org/10.1080/05704928.2017.1352511   Google Scholar

Download


Published
2019-12-30

Cited by

FERYSIUK, K., & WÓJCIAK, K. M. (2019). THE SPECTROPHOTOMETRIC ANALYSIS OF ANTIOXIDANT PROPERTIES OF SELECTED HERBS IN VISION-PRO™ UV-VIS. Applied Computer Science, 15(4), 49–62. https://doi.org/10.23743/acs-2019-29

Authors

Karolina FERYSIUK 
karolina.ferysiuk@student.up.edu.pl
University of Life Sciences in Lublin, Faculty of Food Science and Biotechnology, Department of Animals Raw Materials Technology, Skromna 8 Street, 20-704 Lublin Poland

Authors

Karolina M. WÓJCIAK 

University of Life Sciences in Lublin, Faculty of Food Science and Biotechnology, Department of Animals Raw Materials Technology, Skromna 8 Street, 20-704 Lublin Poland

Statistics

Abstract views: 94
PDF downloads: 9


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.