AN OVERVIEW OF DEEP LEARNING TECHNIQUES FOR SHORT-TERM ELECTRICITY LOAD FORECASTING
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2019)
-
A DECLARATIVE APPROACH TO SHOP ORDERS OPTIMIZATION
Jarosław WIKAREK, Paweł SITEK, Mieczysław JAGODZIŃSKI5-15
-
NUMERICAL MODELLING OF RESINS USED IN STEREOLITOGRAPHY RAPID PROTOTYPING
Danuta MIEDZIŃSKA, Ewelina MAŁEK, Arkadiusz POPŁAWSKI16-26
-
CUSTOMIZING AUDIO FADES WITH A VIEW TO REAL-TIME PROCESSING
Lucian LUPŞA-TĂTARU27-36
-
DEVELOPMENT OF INTEGRATED MANAGEMENT INFORMATION SYSTEMS IN THE CONTEXT OF INDUSTRY 4.0
Bartosz CIEŚLA, Grzegorz GUNIA37-48
-
THE SPECTROPHOTOMETRIC ANALYSIS OF ANTIOXIDANT PROPERTIES OF SELECTED HERBS IN VISION-PRO™ UV-VIS
Karolina FERYSIUK, Karolina M. WÓJCIAK49-62
-
ENHANCING APPROACH USING HYBRID PAILLER AND RSA FOR INFORMATION SECURITY IN BIGDATA
Shadan Mohammed Jihad ABDALWAHID, Raghad Zuhair YOUSIF, Shahab Wahhab KAREEM63-74
-
AN OVERVIEW OF DEEP LEARNING TECHNIQUES FOR SHORT-TERM ELECTRICITY LOAD FORECASTING
Saheed ADEWUYI, Segun AINA, Aderonke LAWAL, Adeniran OLUWARANTI, Moses UZUNUIGBE75-92
-
APPLICATION OF WAVELET – NEURAL METHOD TO DETECT BACKLASH ZONE IN ELECTROMECHANICAL SYSTEMS GENERATING NOISES
Michał TOMCZYK, Anna PLICHTA, Mariusz MIKULSKI93-108
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper presents an overview of some Deep Learning (DL) techniques applicable to forecasting electricity consumptions, especially in the short-term horizon. The paper introduced key parts of four DL architectures including the RNN, LSTM, CNN and SAE, which are recently adopted in implementing Short-term (electricity) Load Forecasting problems. It further presented a model approach for solving such problems. The eventual implication of the study is to present an insightful direction about concepts of the DL methods for forecasting electricity loads in the short-term period, especially to a potential researcher in quest of solving similar problems.
Keywords:
References
Bengio, Y. (2009). Learning deep architectures for AI. Foundation and Trends in Machine Learning, 2(1), 1–127. DOI: https://doi.org/10.1561/2200000006
Brownlee, J. (Ed.) (2018). Deep learning for time series forecasting: Predicting the future with MLPs, CNNs and LSTMs in Python. Machine learning mastery.
Chengdong, L., Zixiang, D., Dongbin, Z., Jianqiang, Y., & Guiqing, Z. (2017). Building energy consumption prediction: An extreme deep learning approach. Energies, 10(10), 1525–1545. DOI: https://doi.org/10.3390/en10101525
Deng, L. (2013). A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing, 3(2). https://doi.org/10.1017/ATSIP DOI: https://doi.org/10.1017/atsip.2013.9
Deng, L., & Yu, D. (2013). Deep learning: methods and applications. Foundations and Trends in Signal Processing, 7(3-4), 197–387. DOI: https://doi.org/10.1561/2000000039
Feinberg, E. A., & Genethliou, D. (2005). Load forecasting. In J. H. Chow, F.F. Wu, & J. Momoh (Eds.), Applied Mathematics for Restructured Electric Power Systems. Power Electronics and Power Systems. Springer, Boston, MA. DOI: https://doi.org/10.1007/0-387-23471-3_12
Gamboa, J. (2017). Deep learning for time-series analysis. arXiv: 1701.01887.
Ghullam, M. U., & Angelos, K. M. (2017). Short term power load forecasting using deep neural networks. ICNC, 10(1109), 594–598, 7876196.
Hamedmoghadam, H., Joorabloo, N., & Jalili, M. (2018). Australia's long-term electricity demand forecasting using deep neural networks. arXiv: preprint arXiv:1801.02148.
Hussein, A. (2018). Deep Learning Based Approaches for Imitation Learning (doctoral dissertation). Robert Gordon University Aberdeen, Scotland.
Hussein, S., & Hussein, P. (2017). Load forecasting using deep neural networks. In 2017 IEEE
Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE. https://doi.org/10.1109/ISGT.2017.8085971 DOI: https://doi.org/10.1109/ISGT.2017.8085971
Kuo, P., & Huang, C. (2018). A high-precision artificial neural networks model for short-term energy load management. Energy, 11(1), 213–226. DOI: https://doi.org/10.3390/en11010213
Luis, H., Carlos, B., Javier, M. A., Lorena, C., Belen, C., Antonio, S., Diane, J. C., David, C., & Jorge, G. (2012). A study of relationship between weather variables and electric power demand inside a smart grid/ smart world. MDPI Sensors, 22(9), 11571–11591. DOI: https://doi.org/10.3390/s120911571
Luis, H., Carlos, B., Javier, M. A., Lorena, C., Belen, C., Antonio, S., Diane, J. C., David, C., & Jorge, G. (2013). Short-term load forecasting for micro-grids based on artificial neural networks, MDPI Sensors, 6(3), 1385–1408. DOI: https://doi.org/10.3390/en6031385
Luis, H., Carlos, B., Javier, M. A., Lorena, C., Belen, C., Antonio, S., & Jaime, L. (2014). Artificial neural network for short-term load forecasting in distribution systems, MDPI, 7(3), 1576–1598. DOI: https://doi.org/10.3390/en7031576
Merkel, G. D., Povinelli, R. J., & Brown, R. H. (2017). Deep neural network regression for shortterm load forecasting of natural gas. Report: Marquette University.
Nor, H. M., Rahaini, M. S., & Siti, H. H. A. (2018). ARIMA with Regression Model in Modelling electricity load demand, Journal of Telecommunication, Electronic and Computer Engineering, 8(12), 113–116.
Rahul, K. A., Frankle, M., & Madan, M. T. (2018). Long term load forecasting with hourly predictions based on long-short-term-memory networks. In 2018 IEEE Texas Power and Energy Conference (TPEC). IEEE. https://doi.org/10.1109/TPEC.2018.8312088 DOI: https://doi.org/10.1109/TPEC.2018.8312088
Sarabjit, S., & Rupinderjit, S. (2013). ARIMA Based Short Term Load Forecasting for Punjab Region. IJSR, 4(6), 1919–1822.
Schmidhuber, J., & Sepp, H. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735
Seunghoung, R., Hongseok, K., & Jaekoo, N. (2017). Deep neural network based demand side short term load forecasting. Energies MDPI, 10(1), 3–23. DOI: https://doi.org/10.3390/en10010003
Swalin, A. (2019). How to handle missing data. Towards Data Science. Retrieved from https://towardsdatascience.com/how-tohandle-missing-data-8646b18db on 18/01/2019.
Wan, H. (2014). Deep neural network based load forecast. Computer Modelling and New Technologies, 18(3), 258–262.
Yi, Y., Jie, W., Yanhua, C., & Caihong L. (2013). A new strategy for short-term load forecasting. Hindawi.
Article Details
Abstract views: 465
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
