APPLICATION OF WAVELET – NEURAL METHOD TO DETECT BACKLASH ZONE IN ELECTROMECHANICAL SYSTEMS GENERATING NOISES

Michał TOMCZYK

marcin.tomczyk@pk.edu.pl
* Cracow Univeristy of Technology, Faculty of Electrical and Computer Engineering, Warszawska 24, 31-155 (Poland)

Anna PLICHTA


Cracow Univeristy of Technology, Faculty of Computer Science and Telecommunications, Chair of Computer Science, Warszawska 24, 31-155 Kraków (Poland)

Mariusz MIKULSKI


State Higher Vocational School in Nowy Sącz, Institute of Engineering,Zamenhofa 1a, 33-300 Nowy Sącz (Poland)

Abstract

This paper presents a method of identifying the width of backlash zone in an electromechanical system generating noises. The system load is a series of rectangular pulses of constant amplitude, generated at equal intervals. The need for identification of the backlash zone is associated with a gradual increase of its width during the drive operation. The study uses wavelet analysis of signals and analysis of neural network weights obtained from the processing without supervised learning. The time-frequency signal representations of accelerations of the mechanical load components were investigated. 


Keywords:

nduction motor, wavelet transformation, backlash zone, neural networks

Aktas, M., & Turkmenoglu, V. (2010). Wavelet-based switching faults detection in direct torque control induction motor drives. Science, Measurement & Technology, IET, 4(6), 303–310.
DOI: https://doi.org/10.1049/iet-smt.2009.0121   Google Scholar

Balara, D., Timko, J., Źilkova, J., & Leśo, D. (2017). Neural networks application for mechanical parameters identification of asynchronous motor. Neural Network World, 3, 259–270.
DOI: https://doi.org/10.14311/NNW.2017.27.013   Google Scholar

Chebil, J., Noel, G., Mesbah, M., & Derihe, M. (2009). Wavelet Decomposition for the Detection and Diagnosis of Faults in Rolling Element Bearings. Jordan Journal of Mechanical and Industrial Engineering, 3(4), 260–267.
  Google Scholar

Doniec, R. (2010). Wykorzystanie metod sztucznej inteligencji do regulacji poziomu insuliny w organiźmie człowieka (doctoral dissertation). Politechnika Śląska, Gliwice.
  Google Scholar

Duch, W., Korbicz, J., Rutkowski, L., & Tadeusiewicz, R. (2000). Biocybernetyka i inżynieria biomedyczna 2000. Sieci neuronowe. Tom 6. Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  Google Scholar

Duda, J. T. (2007). Pozyskiwanie wzorców diagnostycznych w komputerowych analizach sprawności urządzeń, Diagnostyka procesów i systemów (pp. 1–16). Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  Google Scholar

Fuente, M. J., & Saludes, S. (2000). Fault detection and isolation in a non-linear plant via neural networks. IFAC Proceedings Volumes, 33(11), 463–468.
DOI: https://doi.org/10.1016/S1474-6670(17)37402-5   Google Scholar

Granda, D., Aguilar, W. G., Arcos-Aviles, D., & Sotomayor, D., (2017). Broken bar diagnosis for squirrel cage induction motors using frequency analysis based on MCSA and continous wavelet transform. Mathematical and Computational Applications, 22(2), 30. https://doi.org/10.3390/mca22020030
DOI: https://doi.org/10.3390/mca22020030   Google Scholar

Korbicz, J., Kościelny, J. M., & Kowalczuk, Z. (2002). Diagnostyka procesów. Modele. Metody sztucznej inteligencji. Zastosowania. Warszawa: WNT.
  Google Scholar

Kowalski, Cz. (2003). Stan obecny i tendencje rozwojowe metod monitorowania i diagnostyki napędów z silnikami indukcyjnymi. Wiadomości Elektrotechniczne, 4, 160–164.
  Google Scholar

Łobos, T., Leonowicz, Z., Rezmer, J., & Schegner, P. (2006). High resolution spectrum-estimation methods for signal analysis in power systems. IEEE Trans. Instrum. Measur., 55(1), 219–225.
DOI: https://doi.org/10.1109/TIM.2005.862015   Google Scholar

Osowski, S. (1996). Sieci neuronowe – w ujęciu algorytmicznym. Warszawa: WNT.
  Google Scholar

Tadeusiewicz, R. (1993). Sieci neuronowe. Warszawa: Akademicka Oficyna Wydawnicza.
  Google Scholar

Wysogląd, B. (2003). Metody diagnozowania łożysk tocznych z zastosowaniem transformacji falkowej. Diagnostyka, 29, 47–52.
  Google Scholar

Zając, M. (2009). Metody falkowe w monitoringu i diagnostyce układów elektromechanicznych. Monografia 371. Kraków: Politechnika Krakowska.
  Google Scholar

Zhang, J. W., Zhu, N., Yang, L., Yao, Q., & Lu, Q. (2007). A fault diagnosis approach for broken rotor bars based on EMD and envelope analysis. Journal of China University Mining & Technology, 17(2), 205–209.
DOI: https://doi.org/10.1016/S1006-1266(07)60073-X   Google Scholar

Download


Published
2019-12-30

Cited by

TOMCZYK, M., PLICHTA, A., & MIKULSKI, M. (2019). APPLICATION OF WAVELET – NEURAL METHOD TO DETECT BACKLASH ZONE IN ELECTROMECHANICAL SYSTEMS GENERATING NOISES. Applied Computer Science, 15(4), 93–108. https://doi.org/10.23743/acs-2019-32

Authors

Michał TOMCZYK 
marcin.tomczyk@pk.edu.pl
* Cracow Univeristy of Technology, Faculty of Electrical and Computer Engineering, Warszawska 24, 31-155 Poland

Authors

Anna PLICHTA 

Cracow Univeristy of Technology, Faculty of Computer Science and Telecommunications, Chair of Computer Science, Warszawska 24, 31-155 Kraków Poland

Authors

Mariusz MIKULSKI 

State Higher Vocational School in Nowy Sącz, Institute of Engineering,Zamenhofa 1a, 33-300 Nowy Sącz Poland

Statistics

Abstract views: 96
PDF downloads: 25


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.