APPLICATION OF WAVELET – NEURAL METHOD TO DETECT BACKLASH ZONE IN ELECTROMECHANICAL SYSTEMS GENERATING NOISES
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2019)
-
A DECLARATIVE APPROACH TO SHOP ORDERS OPTIMIZATION
Jarosław WIKAREK, Paweł SITEK, Mieczysław JAGODZIŃSKI5-15
-
NUMERICAL MODELLING OF RESINS USED IN STEREOLITOGRAPHY RAPID PROTOTYPING
Danuta MIEDZIŃSKA, Ewelina MAŁEK, Arkadiusz POPŁAWSKI16-26
-
CUSTOMIZING AUDIO FADES WITH A VIEW TO REAL-TIME PROCESSING
Lucian LUPŞA-TĂTARU27-36
-
DEVELOPMENT OF INTEGRATED MANAGEMENT INFORMATION SYSTEMS IN THE CONTEXT OF INDUSTRY 4.0
Bartosz CIEŚLA, Grzegorz GUNIA37-48
-
THE SPECTROPHOTOMETRIC ANALYSIS OF ANTIOXIDANT PROPERTIES OF SELECTED HERBS IN VISION-PRO™ UV-VIS
Karolina FERYSIUK, Karolina M. WÓJCIAK49-62
-
ENHANCING APPROACH USING HYBRID PAILLER AND RSA FOR INFORMATION SECURITY IN BIGDATA
Shadan Mohammed Jihad ABDALWAHID, Raghad Zuhair YOUSIF, Shahab Wahhab KAREEM63-74
-
AN OVERVIEW OF DEEP LEARNING TECHNIQUES FOR SHORT-TERM ELECTRICITY LOAD FORECASTING
Saheed ADEWUYI, Segun AINA, Aderonke LAWAL, Adeniran OLUWARANTI, Moses UZUNUIGBE75-92
-
APPLICATION OF WAVELET – NEURAL METHOD TO DETECT BACKLASH ZONE IN ELECTROMECHANICAL SYSTEMS GENERATING NOISES
Michał TOMCZYK, Anna PLICHTA, Mariusz MIKULSKI93-108
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
This paper presents a method of identifying the width of backlash zone in an electromechanical system generating noises. The system load is a series of rectangular pulses of constant amplitude, generated at equal intervals. The need for identification of the backlash zone is associated with a gradual increase of its width during the drive operation. The study uses wavelet analysis of signals and analysis of neural network weights obtained from the processing without supervised learning. The time-frequency signal representations of accelerations of the mechanical load components were investigated.
Keywords:
References
Aktas, M., & Turkmenoglu, V. (2010). Wavelet-based switching faults detection in direct torque control induction motor drives. Science, Measurement & Technology, IET, 4(6), 303–310. DOI: https://doi.org/10.1049/iet-smt.2009.0121
Balara, D., Timko, J., Źilkova, J., & Leśo, D. (2017). Neural networks application for mechanical parameters identification of asynchronous motor. Neural Network World, 3, 259–270. DOI: https://doi.org/10.14311/NNW.2017.27.013
Chebil, J., Noel, G., Mesbah, M., & Derihe, M. (2009). Wavelet Decomposition for the Detection and Diagnosis of Faults in Rolling Element Bearings. Jordan Journal of Mechanical and Industrial Engineering, 3(4), 260–267.
Doniec, R. (2010). Wykorzystanie metod sztucznej inteligencji do regulacji poziomu insuliny w organiźmie człowieka (doctoral dissertation). Politechnika Śląska, Gliwice.
Duch, W., Korbicz, J., Rutkowski, L., & Tadeusiewicz, R. (2000). Biocybernetyka i inżynieria biomedyczna 2000. Sieci neuronowe. Tom 6. Warszawa: Akademicka Oficyna Wydawnicza EXIT.
Duda, J. T. (2007). Pozyskiwanie wzorców diagnostycznych w komputerowych analizach sprawności urządzeń, Diagnostyka procesów i systemów (pp. 1–16). Warszawa: Akademicka Oficyna Wydawnicza EXIT.
Fuente, M. J., & Saludes, S. (2000). Fault detection and isolation in a non-linear plant via neural networks. IFAC Proceedings Volumes, 33(11), 463–468. DOI: https://doi.org/10.1016/S1474-6670(17)37402-5
Granda, D., Aguilar, W. G., Arcos-Aviles, D., & Sotomayor, D., (2017). Broken bar diagnosis for squirrel cage induction motors using frequency analysis based on MCSA and continous wavelet transform. Mathematical and Computational Applications, 22(2), 30. https://doi.org/10.3390/mca22020030 DOI: https://doi.org/10.3390/mca22020030
Korbicz, J., Kościelny, J. M., & Kowalczuk, Z. (2002). Diagnostyka procesów. Modele. Metody sztucznej inteligencji. Zastosowania. Warszawa: WNT.
Kowalski, Cz. (2003). Stan obecny i tendencje rozwojowe metod monitorowania i diagnostyki napędów z silnikami indukcyjnymi. Wiadomości Elektrotechniczne, 4, 160–164.
Łobos, T., Leonowicz, Z., Rezmer, J., & Schegner, P. (2006). High resolution spectrum-estimation methods for signal analysis in power systems. IEEE Trans. Instrum. Measur., 55(1), 219–225. DOI: https://doi.org/10.1109/TIM.2005.862015
Osowski, S. (1996). Sieci neuronowe – w ujęciu algorytmicznym. Warszawa: WNT.
Tadeusiewicz, R. (1993). Sieci neuronowe. Warszawa: Akademicka Oficyna Wydawnicza.
Wysogląd, B. (2003). Metody diagnozowania łożysk tocznych z zastosowaniem transformacji falkowej. Diagnostyka, 29, 47–52.
Zając, M. (2009). Metody falkowe w monitoringu i diagnostyce układów elektromechanicznych. Monografia 371. Kraków: Politechnika Krakowska.
Zhang, J. W., Zhu, N., Yang, L., Yao, Q., & Lu, Q. (2007). A fault diagnosis approach for broken rotor bars based on EMD and envelope analysis. Journal of China University Mining & Technology, 17(2), 205–209. DOI: https://doi.org/10.1016/S1006-1266(07)60073-X
Article Details
Abstract views: 186
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
