AN EFFECTIVE METAHEURISTIC FOR TOURIST TRIP PLANNING IN PUBLIC TRANSPORT NETWORKS
Krzysztof OSTROWSKI
k.ostrowski@pb.edu.plFaculty of Computer Science, Białystok University of Technology, Wiejska 45A, 15-001 Białystok (Poland)
Abstract
The Time-Dependent Orienteering Problem with Time Windows (TDOPTW) is a combinatorial optimization problem defined on graphs. Its real life applications are particularly associated with tourist trip planning in trans-port networks, where travel time between two points depends on the moment of travel start. In the paper an effective TDOPTW solution (evolutionary algorithm with local search operators) was presented and applied to gen-erate attractive tours in real public transport networks of Białystok and Athens. The method achieved very high-quality solutions in a short execution time.
Keywords:
time-dependent orienteering problem with time-windows, evolutionary algorithm, public transport network, tourist trip planningReferences
Campos, V., Marti, R., Sanchez-Oro, J., & Duarte, A. (2014). Grasp with Path Relinking for the Orienteering Problem. Journal of the Oper. Res. Society, 65(12), 1800–1813. https://doi.org/10.1057/jors.2013.156
DOI: https://doi.org/10.1057/jors.2013.156
Google Scholar
Chao, I., Golden, B., & Wasil, E. (1996). Theory and methodology - a fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88(3), 475–489. https://doi.org/10.1016/0377-2217(95)00035-6
DOI: https://doi.org/10.1016/0377-2217(95)00035-6
Google Scholar
Dean, B.C. (2004). Shortest paths in FIFO time-dependent networks: theory and algorithms. Technical report, MIT Department of Computer Science.
Google Scholar
Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., & Linaza, M. T. (2013). Integrating public transportation in personalised electronic tourist guides. Computers and Operations Research, 40(3), 758–774. https://doi.org/10.1016/j.cor.2011.03.020
DOI: https://doi.org/10.1016/j.cor.2011.03.020
Google Scholar
Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015). Heuristics for the time dependent team orienteering problem: Application to tourist route planning. Computers and Operation Research, 62, 36-50. https://doi.org/10.1016/j.cor.2015.03.016
DOI: https://doi.org/10.1016/j.cor.2015.03.016
Google Scholar
Gendreau, M., Laporte, G., & Semet, F. (1998). A tabu search heuristic for the undirected selective travelling salesman problem. European Journal of Operational Research, 106(2–3), 539–545. https://doi.org/10.1016/S0377-2217(97)00289-0
DOI: https://doi.org/10.1016/S0377-2217(97)00289-0
Google Scholar
Golden, B., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34, 307-318. https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0. CO;2-D
DOI: https://doi.org/10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
Google Scholar
Gunawan, A., Yuan, Z., & Lau, H. C. (2014). A Mathematical Model and Metaheuristics for Time Dependent Orienteering Problem. In PATAT 2014: Proceedings of the 10th International Conference of the Practice and Theory of Automated Timetabling, 26–29 August 2014 (pp. 202–217). Research Collection School Of Information Systems.
Google Scholar
Mahfoud, S. W. (1992). Crowding and preselection revisited. In Proceedings of the 2nd International Conference on Parallel Problem Solving from Nature (PPSN II), Brussels, Belgium, 1992 (pp. 27–36). Amsterdam: Elsevier.
Google Scholar
Ostrowski, K. (2015). Parameters Tuning of Evolutionary Algorithm for the Orienteering Problem. Advances in Computer Science Research, 12, 53–78.
Google Scholar
Ostrowski, K., Karbowska-Chilinska, J., Koszelew, J., & Zabielski, P. (2017). Evolution-inspired local improvement algorithm solving orienteering problem. Annals of Operations Research, 253(1), 519-543. https://doi.org/10.1007/s10479-016-2278-1
DOI: https://doi.org/10.1007/s10479-016-2278-1
Google Scholar
Ostrowski, K. (2017). Evolutionary Algorithm for the Time-Dependent Orienteering Problem. In K. Saeed, W. Homenda, & R. Chaki (Eds.), Computer Information Systems and Industrial Management. CISIM 2017, Lecture Notes in Computer Science (10244, pp. 50–62). Cham: Springer. https://doi.org/10.1007/978-3-319-59105-6_5
DOI: https://doi.org/10.1007/978-3-319-59105-6_5
Google Scholar
Schilde, M., Doerner, K., Hartl, R., & Kiechle, G. (2009). Metaheuristics for the biobjective orienteering problem. Swarm Intelligence, 3(3), 179–201. https://doi.org/10.1007/s11721-009-0029-5
DOI: https://doi.org/10.1007/s11721-009-0029-5
Google Scholar
Tasgetiren, M. (2001). A genetic algorithm with an adaptive penalty function for the orienteering problem. Journal of Economic and Social Research, 4(2), 1–26.
Google Scholar
Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., & Oudheusden, D.V. (2009). A guided local search metaheuristic for the team orienteering problem. European Journal of the Operational Research, 196(1), 118–127. https://doi.org/10.1016/j.ejor.2008.02.037
DOI: https://doi.org/10.1016/j.ejor.2008.02.037
Google Scholar
Verbeeck, C., Sörensen, K., Aghezzaf, E.H., & Vansteenwegen, P. (2013). A fast solution method for the time-dependent orienteering problem. European Journal of Operational Research, 236(2), 419–432. https://doi.org/10.1016/j.ejor.2013.11.038
DOI: https://doi.org/10.1016/j.ejor.2013.11.038
Google Scholar
Authors
Krzysztof OSTROWSKIk.ostrowski@pb.edu.pl
Faculty of Computer Science, Białystok University of Technology, Wiejska 45A, 15-001 Białystok Poland
Statistics
Abstract views: 239PDF downloads: 47
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Krzysztof NIEMIEC, Grzegorz BOCEWICZ, AN AUTHENTICATION METHOD BASED ON A DIOPHANTINE MODEL OF THE COIN BAG PROBLEM , Applied Computer Science: Vol. 20 No. 2 (2024)
- Tomasz Sikora, Wanda Gryglewicz-Kacerka, APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM , Applied Computer Science: Vol. 19 No. 2 (2023)
- Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA, KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 17 No. 4 (2021)
- Tomasz NOWICKI, Adam GREGOSIEWICZ, Zbigniew ŁAGODOWSKI, PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM , Applied Computer Science: Vol. 17 No. 4 (2021)
- Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ , APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES , Applied Computer Science: Vol. 19 No. 2 (2023)
- Wafaa Mustafa HAMEED, Asan Baker KANBAR, USING GA FOR EVOLVING WEIGHTS IN NEURAL NETWORKS , Applied Computer Science: Vol. 15 No. 3 (2019)
- Md. Torikur RAHMAN, A NOVEL APPROACH TO ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK (MANET) THROUGH A NEW BANDWIDTH OPTIMIZATION TECHNIQUE , Applied Computer Science: Vol. 15 No. 2 (2019)
- Muaayed F. AL-RAWI, CONVENTIONAL ENERGY EFFICIENT ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS , Applied Computer Science: Vol. 16 No. 3 (2020)
- Evans BAIDOO, FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS , Applied Computer Science: Vol. 13 No. 1 (2017)
- Anupa ARACHCHIGE, Ranil SUGATHADASA, Oshadhi HERATH, Amila THIBBOTUWAWA, ARTIFICIAL NEURAL NETWORK BASED DEMAND FORECASTING INTEGRATED WITH FEDERAL FUNDS RATE , Applied Computer Science: Vol. 17 No. 4 (2021)
You may also start an advanced similarity search for this article.