INTERMITTENT DEMAND FORECASTING USING DATA MINING TECHNIQUES
Article Sidebar
Open full text
Issue Vol. 14 No. 2 (2018)
-
AN EFFECTIVE METAHEURISTIC FOR TOURIST TRIP PLANNING IN PUBLIC TRANSPORT NETWORKS
Krzysztof OSTROWSKI5-19
-
GRAPHICAL REPRESENTATIONS OF MULTITHREADED APPLICATIONS
Damian GIEBAS, Rafał WOJSZCZYK20-37
-
INTERMITTENT DEMAND FORECASTING USING DATA MINING TECHNIQUES
Gamze Ogcu KAYA, Ali TURKYILMAZ38-47
-
NEURAL CONTROLLER FOR THE SELECTION OF RECYCLED COMPONENTS IN POLYMER-GYPSY MORTARS
Grzegorz KŁOSOWSKI, Tomasz KLEPKA, Agnieszka NOWACKA48-59
-
POSSIBILITIES OF RENOVATION FUNCTIONAL SURFACES OF EQUIPMENTS IN THE MECHANICAL ENGINEERING INDUSTRY
Janette BREZINOVÁ, Ján VIŇÁŠ, Dagmar DRAGANOVSKÁ, Anna GUZANOVÁ, Jakub BREZINA60-68
-
THE INFLUENCE OF THE INJECTION TIMING ON THE PERFORMANCE OF TWO-STROKE OPPOSED-PISTON DIESEL ENGINE
Paweł KARPIŃSKI69-81
-
HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES
Paweł BAŁON, Edward REJMAN, Robert SMUSZ, Janusz SZOSTAK, Bartłomiej KIEŁBASA82-95
-
IDENTIFICATION OF THE MASS INERTIA MOMENT IN AN ELECTROMECHANICAL SYSTEM BASED ON WAVELET–NEURAL METHOD
Marcin TOMCZYK, Barbara BOROWIK, Bohdan BOROWIK96-111
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
Intermittent demand occurs randomly with changing values and a lot of periods having zero demand. Ad hoc intermittent demand forecasting techniques have been developed which take special intermittent demand characteristics into account. Besides traditional techniques and specialized methods, data mining offers a better alternative for intermittent demand forecasting since data mining methods are powerful techniques. This study contributes to the current literature by showing the benefit of using data mining methods for intermittent demand forecasting purpose by comprising mostly used data mining methods.
Keywords:
References
Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega, 40, 722–737. DOI: https://doi.org/10.1016/j.omega.2011.06.008
Chau, K. W. (2006). A review on the integration of data mining into coastal modeling. Journal of Environmental Management, 80, 47–57. DOI: https://doi.org/10.1016/j.jenvman.2005.08.012
Croston, J. F. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23, 289–304. DOI: https://doi.org/10.1057/jors.1972.50
Hoover, J. (2006). Measuring Forecast Accuracy: Omissions in Today’s Forecasting Engines and Demand-Planning Software. International Journal of Applied Forecasting, 1, 32–35.
Hua, Z., & Zhang, B. (2006). A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. Applied Mathematics and Computation, 181, 1035–1048. DOI: https://doi.org/10.1016/j.amc.2006.01.064
Kennedy, W. J., Patterson, J. W., & Fredendall, L. D. (2002). An overview of recent literature on spare parts inventories. Int. J. of Production Economics, 76, 201–215. DOI: https://doi.org/10.1016/S0925-5273(01)00174-8
Mitchell, T. (1997). Machine Learning. Boston: McGraw-Hill.
Pandya, R., & Pandya, J. (2015). C5.0 Algorithm to Improved Decision Tree with Feature Selection and Reduced Error Pruning. International Journal of Computer Applications, 11, 718–21. DOI: https://doi.org/10.5120/20639-3318
Punjari, A. K. (2006). Data Mining Techniques. Universities Press Private Limited.
Rao, A. V. (1973). A comment on: forecasting and stock control for intermittent demands. Operational Research Society, 24, 639–640. DOI: https://doi.org/10.1057/jors.1973.120
Regattieri, A., Gamberi, M., Gamberini, R., & Manzini, R. (2005). Managing Lumpy Demand for Aircraft Spare Parts. Journal of Air Transport Management, 11, 426–431. DOI: https://doi.org/10.1016/j.jairtraman.2005.06.003
Syntetos, A. A. (2007). A note on managing lumpy demand for aircraft spare parts. Journal of Air Transport Management, 13, 166–167. DOI: https://doi.org/10.1016/j.jairtraman.2007.01.002
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York: Springer. DOI: https://doi.org/10.1007/978-1-4757-2440-0
Article Details
Abstract views: 257
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
