NEURAL CONTROLLER FOR THE SELECTION OF RECYCLED COMPONENTS IN POLYMER-GYPSY MORTARS

Grzegorz KŁOSOWSKI

g.klosowski@pollub.pl
Lublin University of Technology, Lublin (Poland)

Tomasz KLEPKA


Department of Technology and Polymer Processing, Lublin University of Technology, Lublin (Poland)

Agnieszka NOWACKA


Department of Technology and Polymer Processing, Lublin University of Technology, Lublin (Poland)

Abstract

This study presents research on the development of an intelligent controller that allows optimal selection of rubber granules, as an admixture recycling component for polymer-gypsy mortars. Based on the results of actual measurements, neural networks capable of predicting the setting time of gypsum mortar, as well as determining the bending and compressive strength coefficients were trained. A number of simulation experiments were carried out, thanks to which the characteristics of setting times and strength of mortars containing different compositions of recycling additives were determined. Thanks to the obtained results, it was possible to select the rubber admixtures optimally both in terms of the percentage share as well as in relation to the diameter of the granules.


Keywords:

neural networks, gypsum-polymers, rubber regranulate

Aslani, F., Ma, G., Wan, D. L. Y., & Muselin, G. (2018). Development of high-performance selfcompacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553-566. https://doi.org/10.1016/j.jclepro.2018.02.074
DOI: https://doi.org/10.1016/j.jclepro.2018.02.074   Google Scholar

Baricevic, A., Jelcic Rukavina, M., & Pezer, M. (2018). Influence of recycled tire polymer fibers on concrete properties. Cement and Concrete Composites, 91, 29–41.
DOI: https://doi.org/10.1016/j.cemconcomp.2018.04.009   Google Scholar

Benosman, A. S., Taïbi, H., Senhadji, Y., Mouli, M., Belbachir, M., & Bahlouli, M. I. (2017). Plastic Waste Particles in Mortar Composites: Sulfate Resistance and Thermal Coefficients. Progress in Rubber, Plastics and Recycling Technology, 33(3), 171.
DOI: https://doi.org/10.1177/147776061703300304   Google Scholar

Bergström, L., Sturm (née Rosseeva), E. V., Salazar-Alvarez, G., & Cölfen, H. (2015). Mesocrystals in biominerals and colloidal arrays. Acc. Chem. Res., 48, 1391–1402. https://doi.org/10.1021/ar500440b
DOI: https://doi.org/10.1021/ar500440b   Google Scholar

Chłądzyński, S. (2008). Spoiwa gipsowe w budownictwie. Warsawa: Dom wydawniczy Medium.
  Google Scholar

Aciu, C. (2013). Possibilities of Recycling Rubber Waste in the Composition of Mortars. ProEnvironment Promediu, 6(15).
  Google Scholar

Di Mundo, R., Petrella, A., & Notarnicola, M. (2018). Surface and bulk hydrophobic cement composites by tyre rubber addition. Construction and Building Materials, 172, 176–184. https://doi.org/10.1016/j.conbuildmat.2018.03.233
DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.233   Google Scholar

Forrest, M. (2014). Recycling and re-use of waste rubber. Shropshire: Smithers Rapra.
  Google Scholar

Gorninski, J. P., Dal Molin, D.C., & Kazmierczak,C. S.(2007). Strength degradation of polymer concrete in acidic environments. Cem. Concr. Compos., 29(8), 637–645. https://doi.org/10.1016/j.cemconcomp.2007.04.001
DOI: https://doi.org/10.1016/j.cemconcomp.2007.04.001   Google Scholar

Herrero, S., Mayor, P., & Hernandez-Olivarez, F. (2013). Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster-rubber mortars. Materials & Design, 47, 633–642. https://doi.org/10.1016/j.matdes.2012.12.063
DOI: https://doi.org/10.1016/j.matdes.2012.12.063   Google Scholar

Hooton, R. D. (2015). Current developments and future needs in standards for cementitious materials. Cement and Concrete Research, 78, 165–177. https://doi.org/10.1016/j.cemconres.2015.05.022
DOI: https://doi.org/10.1016/j.cemconres.2015.05.022   Google Scholar

Jafari, K., Tabatabaeian, M., Joshaghani, A., & Ozbakkaloglu, T. (2018). Optimizing the mixturedesign of polymer concrete: An experimental investigation. Construction and Building Materials, 167, 185–196. https://doi.org/10.1016/j.conbuildmat.2018.01.191
DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.191   Google Scholar

Jarosiński, A., Żelazny, S., & Nowak, A. (2007). Warunki otrzymywania spoiwa gipsowego z produktu odpadowego pochodzącego z procesu pozyskiwania koncentratu cynku. Kraków: Czasopismo techniczne 1/Ch-2007 Wydawnictwo Politechniki Krakowskiej.
  Google Scholar

Konar, B., Das, A., Gupta, P. K., & Saha, M. (2011). Physicochemical characteristics of styrenebutadiene latex- modified mortar composite vis-à-vis preferential interactions. J. Macromol. Sci., 48 (9), 757–765. https://doi.org/10.1080/10601325.2011.596072
DOI: https://doi.org/10.1080/10601325.2011.596072   Google Scholar

Kou, S.-C., & Poon, C.-S. (2013). A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin. Constr Build Mater., 41, 146–151. https://doi.org/10.1016/j.conbuildmat.2012.11.083
DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.083   Google Scholar

Lorrentz, P. (2015). Artificial Neural Systems: Principle and Practice. Bentham Science Publishers. https://doi.org/10.2174/97816810809011150101
DOI: https://doi.org/10.2174/97816810809011150101   Google Scholar

Al Menhosh, A., Wang, Y., Wang, Y., & Augusthus-Nelson, L. (2018). Long term durability properties of concrete modified with metakaolin and polymer admixture. Construction and Building Materials, 172, 41–51. https://doi.org/10.1016/j.conbuildmat.2018.03.215
DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.215   Google Scholar

Osiecka, E. (2005). Materiały budowlane – tworzywa sztuczne. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  Google Scholar

Pedro, D., De Brito, J., & Veiga, R. (2012). Mortars made with fine granulate from shredded tires. Journal of Materials in Civil Engineering, 25(4), 519–529. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000606
DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000606   Google Scholar

Picker, A., Nicoleau, L., Burghard, Z., Bill, J., Zlotnikov, I., Labbez, C., Nonat, A., & Cölfen, H. (2017). Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Science Advances, 11(3), 37–49. https://doi.org/10.1126/sciadv.1701216
DOI: https://doi.org/10.1126/sciadv.1701216   Google Scholar

Sahmaran, M., & Li, V. C. (2009). Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res., 39, 1033–1043. https://doi.org/10.1016/j.cemconres.2009.07.009
DOI: https://doi.org/10.1016/j.cemconres.2009.07.009   Google Scholar

Seto, J., Ma, Y., Davis, S. A., Meldrum, F., Gourrier, A., Kim, Y.-Y., Cölfen, H. (2012). Structureproperty relationships of a biological mesocrystal in the adult sea urchin spine. Proceedings of the National Academy of Sciences, 109(10), 3699.
DOI: https://doi.org/10.1073/pnas.1109243109   Google Scholar

Serdar, M., Baricevic, A., Jelcic Rukavina, M., Pezer, M., & Bjegovic, D. (2015). Shrinkage behaviour of fibre reinforced concrete with recycled tyre polymer fibres. Int. J. Polym. Sci., 145918. https://doi.org/10.1155/2015/145918
DOI: https://doi.org/10.1155/2015/145918   Google Scholar

Serna, Á., del Rio, M., Palomo, J. G., & González, M. (2012). Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres. Construction and Building
  Google Scholar

Materials, 35, 633–641. https://doi.org/10.1016/j.conbuildmat.2012.04.093
DOI: https://doi.org/10.1016/j.conbuildmat.2012.04.093   Google Scholar

Sosoi, G., Barbuta, M., Serbanoiu, A. A., Babor, D., & Burlacu, A. (2018). Wastes as aggregate substitution in polymer concrete. Procedia Manufacturing, 22, 347–351. https://doi.org/10.1016/j.promfg.2018.03.052
DOI: https://doi.org/10.1016/j.promfg.2018.03.052   Google Scholar

Tanyildizi, H., & Asilturk, E. (2018). High temperature resistance of polymer-phosphazene concrete for 365 days. Construction and Building Materials, 174, 741–748. https://doi.org/10.1016/j.conbuildmat.2018.04.078
DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.078   Google Scholar

Thomas, P., & Thomas, A. (2011). Multilayer perceptron for simulation models reduction: Application to a sawmill workshop. Engineering Applications of Artificial Intelligence, 24(4), 646-657. https://doi.org/10.1016/j.engappai.2011.01.004
DOI: https://doi.org/10.1016/j.engappai.2011.01.004   Google Scholar

Download


Published
2018-06-30

Cited by

KŁOSOWSKI, G., KLEPKA, T., & NOWACKA, A. (2018). NEURAL CONTROLLER FOR THE SELECTION OF RECYCLED COMPONENTS IN POLYMER-GYPSY MORTARS. Applied Computer Science, 14(2), 48–59. https://doi.org/10.23743/acs-2018-12

Authors

Grzegorz KŁOSOWSKI 
g.klosowski@pollub.pl
Lublin University of Technology, Lublin Poland

Authors

Tomasz KLEPKA 

Department of Technology and Polymer Processing, Lublin University of Technology, Lublin Poland

Authors

Agnieszka NOWACKA 

Department of Technology and Polymer Processing, Lublin University of Technology, Lublin Poland

Statistics

Abstract views: 175
PDF downloads: 50


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.