HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES
Paweł BAŁON
p.balon@szel-tech.plSZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec (Poland)
Edward REJMAN
Rzeszów University of Technology, Powstańców Warszawy Avenue 9, 35-959 Rzeszów (Poland)
Robert SMUSZ
Rzeszów University of Technology, Powstańców Warszawy Avenue 9, 35-959 Rzeszów (Poland)
Janusz SZOSTAK
AGH University of Science and Technology, Mickiewicza Avenue 30-B4, 30-059 Kraków (Poland)
Bartłomiej KIEŁBASA
SZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec (Poland)
Abstract
Aircraft structures are designed to mainly consist of integral elements which have been produced by welding or riveting of component parts in technologies utilized earlier in the production process. Parts such as ribs, longitudinals, girders, frames, coverages of fuselage and wings can all be categorized as integral elements. These parts are assembled into larger assemblies after milling. The main aim of the utilized treatments, besides ensuring the functional criterion, is obtaining the best ratio of strength to construction weight. Using high milling speeds enables economical manufacturing of integral components by reducing machining time, but it also improves the quality of the machined surface. It is caused by the fact that cutting forces are significantly lower for high cutting speeds than for standard machining techniques.
References
Lundblad, M. (2002). Influence of Cutting Tool Geometry on Residual Stress in the Workpiece. In Proc. Third Wave AdvantEdge User’s Conferece (Paper 7). Atlanta, GA.
Google Scholar
Shet, C., & Deng, X. (2003). Residual Stresses and Strains in Orthogonal Metal Cutting. Int. J. Machine Tools Manuf., 43(6), 573-587. https://doi.org/10.1016/S0890-6955(03)00018-X
DOI: https://doi.org/10.1016/S0890-6955(03)00018-X
Google Scholar
Shih, A. J., & Yang, H. T. Y. (1993). Experimental and Finite Element Predictions of Residual Stresses Due to Orthogonal Metal Cutting. Int. J. Num. Meth. Eng., 36, 1487–1507. https://doi.org/10.1002/nme.1620360905
DOI: https://doi.org/10.1002/nme.1620360905
Google Scholar
Adamski, W. (2010). Manufacturing development strategies in aviation industry. Advances in Manufacturing Science and Technology, 34(3), 73–84.
Google Scholar
Mativenga, P. T., & Hon, K. K. B. (2005). An experimental study of cutting force in high speed end milling and implications for dynamic force modelling. Journal of Manufacturing Science and Engineering, 127(2), 251-261. https://doi.org/10.1115/1.1863254
DOI: https://doi.org/10.1115/1.1863254
Google Scholar
Kuczmaszewski, J., Pieśko, P., & Zawada-Michałowska, M. (2017). Influence of Milling Strategies of Thin-walled Elements on Effectiveness of their Manufacturing. Procedia Engineering, 182, 381-186. https://doi.org/10.1016/j.proeng.2017.03.117
DOI: https://doi.org/10.1016/j.proeng.2017.03.117
Google Scholar
Authors
Paweł BAŁONp.balon@szel-tech.pl
SZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec Poland
Authors
Edward REJMANRzeszów University of Technology, Powstańców Warszawy Avenue 9, 35-959 Rzeszów Poland
Authors
Robert SMUSZRzeszów University of Technology, Powstańców Warszawy Avenue 9, 35-959 Rzeszów Poland
Authors
Janusz SZOSTAKAGH University of Science and Technology, Mickiewicza Avenue 30-B4, 30-059 Kraków Poland
Authors
Bartłomiej KIEŁBASASZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec Poland
Statistics
Abstract views: 57PDF downloads: 58
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Paweł BAŁON, Edward REJMAN, Bartłomiej KIEŁBASA, Janusz SZOSTAK, Robert SMUSZ, NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE STRENGTH OF TANKS DEDICATED TO HOT UTILITY WATER , Applied Computer Science: Vol. 14 No. 4 (2018)