NUMERICAL SIMULATION OF THE DESIGN OF EXTRUSION PROCESS OF POLYMERIC MINI-TUBES
Sebastian BIAŁASZ
sebastian.bialasz@pollub.edu.pl* Department of Polymer Processing, Mechanical Engineering Faculty, Lublin University of Technology (Poland)
Ramon PAMIES
Department of Materials and Manufacturing Engineering, Universidad Politécnica de Cartagena, (Spain)
Abstract
In this paper we represent a study reporting the numerical simulation of small-diameter pipes extrusion process. Polypropylene and low density polyethylene were chosen as plastics and a selected transverse head as a tool in the simulations. The aim of the study is to examine the distribution of temperature in the individual sections of the bagasse and tools, in order to optimize the parameters and process flow extrusion and validate the implementation tools, by simulating the flow of plastic by the head.
Keywords:
Simulation, extrusion, mini-tube, headReferences
Garbacz, T. (2012). Structure and properties of cellular thinwalled cable coatings. Polimery, 57(11–12), 865–868.
DOI: https://doi.org/10.14314/polimery.2012.865
Google Scholar
Garbacz, T., & Sikora, J. (2012). Przetwórstwo tworzyw polimerowych, ćwiczenia laboratoryjne, część 1. Lublin: Wydawnictwo Politechniki Lubelskiej.
Google Scholar
Githuku, D., & Giacomin, A. (1993). A Spectral Element Simulation of Gravitational Flow During Plastic Pipe Extrusion. Journal of Engineering Materials and Technology, 115, 433–439.
DOI: https://doi.org/10.1115/1.2904242
Google Scholar
Jachowicz, T., & Klepka, T. (2012). Przetwórstwo tworzyw polimerowych, ćwiczenia laboratoryjne, część 2. Lublin: Wydawnictwo Politechniki Lubelskiej.
Google Scholar
Klepka, T. (2001). Parameters characterizing optotelecommunication cable and its innerduct interaction. Polimery, 46(2), 192–201.
DOI: https://doi.org/10.14314/polimery.2001.192
Google Scholar
Klepka, T., Jeziórska, R., & Szadkowska, A. (2015). Thin wall products made of modified high density polyethylene. Przemysl Chemiczny, 94(8), 1352–1355.
Google Scholar
Koutelieris, A., Kioupi, K., Haralampous, O., Kitsakis, K., Vaxevanidis, N., & Kechagias, J. (2017). Simulation of extrusion of high density polyethylene tubes. MATEC Web of Conferences 112, 04004.
DOI: https://doi.org/10.1051/matecconf/201711204004
Google Scholar
Pielichowski, J., & Pruszyński, A. (1998). Technologia tworzyw sztucznych. Warszawa: Wydawnictwa Naukowo-Techniczne.
Google Scholar
Rabek, J. F. (2008). Współczesna wiedza o polimerach. Warszawa: Wydawnictwo Naukowe PWN.
Google Scholar
Rauwendaal, Ch. (2014). Polymer Extrusion. Munich: Hanser.
DOI: https://doi.org/10.3139/9781569905395.fm
Google Scholar
Rydzkowski, T. (2011). Properties of recycled polymer mixtures obtained in the screw-disc extrusion process. Polimery, 56(2), 135–139.
DOI: https://doi.org/10.14314/polimery.2011.135
Google Scholar
Sasimowski, E., Sikora, J., & Królikowski, B. (2014). Effectiveness of polyethylene extrusion in a singlescrew grooved feed extruder. Polimery, 59(6), 505–510. https://doi.org/10.14314/polimery.2014.505
DOI: https://doi.org/10.14314/polimery.2014.505
Google Scholar
Sikora, J. (2008). Design of Extrusion Heads. Lublin: Wydawnictwo Politechniki Lubelskiej.
Google Scholar
Sikora, R. (1993). Przetwórstwo tworzyw wielocząsteczkowych. Warszawa: Wydawnictwo Edukacyjne.
Google Scholar
Sikora, R. (2006). Przetwórstwo tworzyw polimerowych. Podstawy logiczne, formalne i terminologiczne. Lublin: Wydawnictwo Politechniki Lubelskiej.
Google Scholar
Sykutera, D. (2012). Wspomaganie komputerowe w procesach przetwórczych – materiały wykładowe. Bydgoszcz: UTP Bydgoszcz.
Google Scholar
Tor-Świątek, A., Garbacz, T., & Jachowicz, T. (2016). Quantitative Assessment of the Microscopic Structure of Extruded and Injected Low-Density Polyethylene Modified with Microspheres by Image Analysis. Cellular Polymers, 35, 67-84. https://doi.org/10.1177/026248931603500202
DOI: https://doi.org/10.1177/026248931603500202
Google Scholar
White, J. L., & Potente, H. (2003). Screw Extrusion. Science and Technology. Munich: Hanser.
DOI: https://doi.org/10.3139/9783446434189.fm
Google Scholar
Wilczyński, K., Garbarski, J., Nastaj, A., & Lewandowski, A. (2009). Model komputerowy procesów wytłaczania i wtryskiwania. Czasopismo Techniczne. Mechanika, 106(1-M), 367-373.
Google Scholar
Wytłaczanie - linia technologiczna (n.d.). Retrieved August 6, 2018, from http://www.tworzywa.pwr.wroc.pl/pl/dydaktyka/linia-technologiczna
Google Scholar
Authors
Sebastian BIAŁASZsebastian.bialasz@pollub.edu.pl
* Department of Polymer Processing, Mechanical Engineering Faculty, Lublin University of Technology Poland
Authors
Ramon PAMIESDepartment of Materials and Manufacturing Engineering, Universidad Politécnica de Cartagena, Spain
Statistics
Abstract views: 87PDF downloads: 38
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Sebastian BIAŁASZ, INJECTION SIMULATION FOR THE MOLD PROCESS IN THE MEDICAL INDUSTRY , Applied Computer Science: Vol. 14 No. 3 (2018)
Similar Articles
- Noor SABAH, Ekhlas HAMEED, Muayed S AL-HUSEINY, OPTIMAL SLIDING MODE CONTROLLER DESIGN BASED ON WHALE OPTIMIZATION ALGORITHM FOR LOWER LIMB REHABILITATION ROBOT , Applied Computer Science: Vol. 17 No. 3 (2021)
You may also start an advanced similarity search for this article.