NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE STRENGTH OF TANKS DEDICATED TO HOT UTILITY WATER
Paweł BAŁON
p.balon@szel-tech.pl* SZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec (Poland)
Edward REJMAN
Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Powstańców Warszawy Avenue 9, 35-959 Rzeszów (Poland)
Bartłomiej KIEŁBASA
SZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec (Poland)
Janusz SZOSTAK
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Manufacturing Systems, Mickiewicza Avenue 30-B4, 30-059 Kraków (Poland)
Robert SMUSZ
* Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Department of Thermodynamics, Powstańców Warszawy Avenue 9, 35-959 Rzeszów (Poland)
Abstract
The focus of this paper are experimental and numerical strength tests of domestic hot water storage tanks. The tests involved the verification of the minimum wall thickness for the assumed operating parameters while meeting all safety standards. The authors presented numerical and experimental analyses for the verification of strength parameters of axial cylindrical tanks due to the lack of methodological guidelines for this type of equipment. In order to verify the conducted theoretical considerations and calculations, experimental tests of samples of front welds produced with austenitic steel as well as a pressure test for the whole tank were conducted using a research test stand.
Keywords:
pressure vessel, finite element, simulation, numerical analysis, tankReferences
Bałon, P., & Świątoniowski, A. (2013). The influence of cold forming conception on the springback magnitude. Key Engineering Materials, 554–557, 2299–2311.
DOI: https://doi.org/10.4028/www.scientific.net/KEM.554-557.2299
Google Scholar
Bałon, P., & Świątoniowski, A. (2014). Forming of automotive parts with nuts clinch process in comparison to welding of nuts. Key Engineering Materials, 611–612, 1503–1510.
DOI: https://doi.org/10.4028/www.scientific.net/KEM.611-612.1503
Google Scholar
Bałon, P., & Świątoniowski, A. (2014). Stamping automotive parts with clinch nut process. AIP Conference Proceedings, 1567, 971–974.
DOI: https://doi.org/10.1063/1.4850132
Google Scholar
Bałon, P., & Świątoniowski, A. (2016a). Analiza procesu formowania dennicy hybrydowego urządzenia grzewczego. Mechanik: miesięcznik naukowo-techniczny, 12, 1840–1843.
DOI: https://doi.org/10.17814/mechanik.2016.12.575
Google Scholar
Bałon, P., & Świątoniowski, A. (2016b). Improved method of springback compensation in metal forming analysis. Strength of Materials, 48(4), 540–550.
DOI: https://doi.org/10.1007/s11223-016-9796-6
Google Scholar
Bałon, P., Świątoniowski, A., & Kiełbasa, B. (2017). The analysis of bottom forming process for hybrid heating device. AIP Conference Proceedings, 1896, 170001.
Google Scholar
Bałon, P., Świątoniowski, A., & Szostak, J. (2015). Łączenie elementów struktury samochodu z zastosowaniem wtłaczania i zgrzewania części złącznych. In J. Mucha (Ed.), Badania i kierunki rozwoju technologii połączeń przetłaczanych na zimno: konstrukcje – procesy – zastosowanie (pp. 221-236). Rzeszow, Poland: Oficyna Wydawnicza Politechniki Rzeszowskiej.
Google Scholar
Bałon, P., Świątoniowski, A., Szostak, J., & Kiełbasa, B. (2016). The analysis of bottom forming process for hybrid heating device. In J. Mucha (Ed.), Progressive technologies and materials (pp. 7–22). Rzeszów, Poland: Oficyna Wydawnicza Politechniki.
DOI: https://doi.org/10.1063/1.5008199
Google Scholar
Bałon, P., Świątoniowski, A., Szostak, J., & Kiełbasa, B. (2017). Springback compensation for a vehicle’s steel body panel. AIP Conference Proceedings, 1896, 080001.
DOI: https://doi.org/10.1063/1.5008081
Google Scholar
Błachut, J., & Magnucki, K. (2008). Strength, stability, and optimization of pressure vessels: Review of selected problems. Applied Mechanics Reviews, 61(6), 1–33.
DOI: https://doi.org/10.1115/1.2978080
Google Scholar
Dyrektywa 97/23/WE Parlamentu Europejskiego i Rady z dnia 27.05.1997 w sprawie zbliżenia ustawodawstwa Państw Członkowskich dotycząca urządzeń ciśnieniowych. (1997).
Google Scholar
Harvey, J. F. (2000). Theory and Design of Pressure Vessels. New Delhi: CBS Publishers & Distributors.
Google Scholar
Krużelecki, J., & Proszowski, R. (2012). Shape optimization of thin-walled pressure vessel end closures. Structural and Multidisciplinary Optimization, 46, 739–754.
DOI: https://doi.org/10.1007/s00158-012-0789-1
Google Scholar
Lakshmi Devi, E., & Hari Shankar, V. (2016). Modeling and Analysis of Cryogenic Pressure vessel using FEA. International Journal of Engineering Trends and Technology (IJETT), 42, (5), 261–265.
DOI: https://doi.org/10.14445/22315381/IJETT-V42P249
Google Scholar
Lewiński, J., & Magnucki, K. (2010). Shaping of a middle surface of a dished head of a circular cylindrical pressure vessel. Journal of Theoretical and Applied Mechanics, 48(2), 297–307.
Google Scholar
Lewiński, J., & Magnucki, K. (2012). Optimal shaping of middle surface of a dished head of circular cylindrical vessel with the help of B´ezier curve. ASME 2010 Pressure Vessels and Piping Conference, 5, PVP2010-25208.
DOI: https://doi.org/10.1115/PVP2010-25208
Google Scholar
Li, J., Sheng, J., & Zhang, Y. (2012). Simulation Research of a type of Pressure Vessel under Complex Loading Part 2 Complex Load of the Numerical Analysis. Advances in Intelligent Systems Research, 26, 4114.
DOI: https://doi.org/10.2991/iccia.2012.166
Google Scholar
PN-EN 13445-1. (2014). Nieogrzewane płomieniem zbiorniki ciśnieniowe. Część 1: Wymagania ogólne.
Google Scholar
PN-EN 13445-3. (2014). Nieogrzewane płomieniem zbiorniki ciśnieniowe. Część 3: Projektowanie.
Google Scholar
PN-EN 1993-1-6:2007. (2007). Design of steel structures-Strength and stability of shell structures.
Google Scholar
PN-EN 1993-4-2:2009. (2009). Design of steel structures-Tanks.
Google Scholar
Rozporządzenie Ministra Gospodarki z dnia 21.12.2005 w sprawie zasadniczych wymagań dla urządzeń ciśnieniowych i zespołów urządzeń ciśnieniowych. (2005).
Google Scholar
Rozporządzenie ministra Gospodarki, Pracy i Polityki Społecznej z dnia 9.07.2003 w sprawie warunków technicznych dozoru technicznego w zakresie eksploatacji niektórych urządzeń ciśnieniowych. (2003).
Google Scholar
Rozporządzenie Rady Ministrów z dnia 16.07.2002 w sprawie rodzajów urządzeń technicznych podlegających dozorowi technicznemu. (2002).
Google Scholar
Ventsel, E., & Krauthammer, T. (2001). Thin Plates and Shells. Theory, Analysis and Applications. Basel, New York, USA: Marcel Dekker Inc. Warunki Urzędu Dozoru Technicznego WUDT/UC/2003 (2005). Urządzenia ciśnieniowe. Wydanie II, Warsaw.
DOI: https://doi.org/10.1201/9780203908723
Google Scholar
Ziółko, J. (1986). Metal Tanks for Liquids and Gases (in Polish). Warsaw, Poland: Arkady.
Google Scholar
Authors
Paweł BAŁONp.balon@szel-tech.pl
* SZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec Poland
Authors
Edward REJMANRzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Department of Mechanical Engineering, Powstańców Warszawy Avenue 9, 35-959 Rzeszów Poland
Authors
Bartłomiej KIEŁBASASZEL-TECH Szeliga Grzegorz, Wojska Polskiego Street 3, 39-300 Mielec Poland
Authors
Janusz SZOSTAKAGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Manufacturing Systems, Mickiewicza Avenue 30-B4, 30-059 Kraków Poland
Authors
Robert SMUSZ* Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Department of Thermodynamics, Powstańców Warszawy Avenue 9, 35-959 Rzeszów Poland
Statistics
Abstract views: 119PDF downloads: 30
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Paweł BAŁON, Edward REJMAN, Robert SMUSZ, Janusz SZOSTAK, Bartłomiej KIEŁBASA, HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES , Applied Computer Science: Vol. 14 No. 2 (2018)
Similar Articles
- Andrzej ŁUKASZEWICZ, Jerzy JÓZWIK, Kamil CYBUL, IMPACT OF FRICTION COEFFICIENT VARIATION ON TEMPERATURE FIELD IN ROTARY FRICTION WELDING OF METALS – FEM STUDY , Applied Computer Science: Vol. 19 No. 3 (2023)
- Damian KOLNY, Dawid KURCZYK, Józef MATUSZEK, COMPUTER SUPPORT OF ERGONOMIC ANALYSIS OF WORKING CONDITIONS AT WORKSTATIONS , Applied Computer Science: Vol. 15 No. 1 (2019)
- Błażej CZAJKA, Patryk RÓŻYŁO, Hubert DĘBSKI, STABILITY AND FAILURE OF THIN-WALLED COMPOSITE STRUCTURES WITH A SQUARE CROSS-SECTION , Applied Computer Science: Vol. 18 No. 2 (2022)
- Tomasz BULZAK, Zbigniew PATER, Janusz TOMCZAK, NEW EXTRUSION PROCESS FOR PRODUCING TWIST DRILLS USING SPLIT DIES , Applied Computer Science: Vol. 13 No. 3 (2017)
- Sebastian BIAŁASZ, INJECTION SIMULATION FOR THE MOLD PROCESS IN THE MEDICAL INDUSTRY , Applied Computer Science: Vol. 14 No. 3 (2018)
- Łukasz SEMKŁO, Łukasz GIERZ, NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES , Applied Computer Science: Vol. 18 No. 4 (2022)
- Zbigniew CZYŻ, Paweł KARPIŃSKI, Tacetdin SEVDIM, NUMERICAL ANALYSIS OF THE DRAG COEFFICIENT OF A MOTORCYCLE HELMET , Applied Computer Science: Vol. 14 No. 1 (2018)
- Sebastian BIAŁASZ, Ramon PAMIES, NUMERICAL SIMULATION OF THE DESIGN OF EXTRUSION PROCESS OF POLYMERIC MINI-TUBES , Applied Computer Science: Vol. 14 No. 3 (2018)
- Tytus TULWIN, MODELLING OF A LARGE ROTARY HEAT EXCHANGER , Applied Computer Science: Vol. 13 No. 1 (2017)
- Agnieszka ZACHCIAŁ, Andrzej JARDZIOCH, APPLICATION OF SIMULATION RESEARCH TO ANALYSE THE PRODUCTION PROCESS IN TERMS OF SUSTAINABLE DEVELOPMENT , Applied Computer Science: Vol. 18 No. 3 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.