A MODEL FOR ASSESSING THE LEVEL OF AUTOMATION OF A MAINTENANCE DEPARTMENT USING ARTIFICIAL NEURAL NETWORK
Article Sidebar
Open full text
Issue Vol. 14 No. 4 (2018)
-
BOVW FOR CLASSIFICATION IN GEOMETRICS SHAPES
Baldemar ZURITA, Luís LUNA, José HERNÁNDEZ, Federico RAMÍREZ5-11
-
MODEL OF A COMPUTER SYSTEM FOR SELECTION OF OPERATING PARAMETERS FOR TRANSPORT VEHICLES IN THE ASPECT OF THEIR DURABILITY
Łukasz WOJCIECHOWSKI, Tadeusz CISOWSKI12-24
-
COMPARATIVE ANALYSIS OF THE IMPACT OF DIE DESIGN ON ITS LOAD AND DISTRIBUTION OF STRESS DURING EXTRUSION
Irena NOWOTYŃSKA, Stanisław KUT25-33
-
NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE STRENGTH OF TANKS DEDICATED TO HOT UTILITY WATER
Paweł BAŁON, Edward REJMAN, Bartłomiej KIEŁBASA, Janusz SZOSTAK, Robert SMUSZ34-53
-
IDENTIFICATION OF A BACKLASH ZONE IN AN ELECTROMECHANICAL SYSTEM CONTAINING CHANGES OF A MASS INERTIA MOMENT BASED ON A WAVELET–NEURAL METHOD
Marcin TOMCZYK, Barbara BOROWIK, Mariusz MIKULSKI54-69
-
A MODEL FOR ASSESSING THE LEVEL OF AUTOMATION OF A MAINTENANCE DEPARTMENT USING ARTIFICIAL NEURAL NETWORK
Daniel HALIKOWSKI, Justyna PATALAS-MALISZEWSKA, Małgorzata SKRZESZEWSKA70-80
-
EVALUATION OF SAP SYSTEM IMPLEMENTATION IN AN ENTERPRISE OF THE AUTOMOTIVE INDUSTRY – CASE STUDY
Monika KULISZ81-92
-
REVIEW OF THE DATA MODELING STANDARDS AND DATA MODEL TRANSFORMATION TECHNIQUES
Leszek JASKIERNY93-108
Archives
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
daniel.halikowski@pwsz.nysa.pl
Abstract
With regard to adapting enterprise to the Industry 4.0 concept, the first element should be the implementation and use of an information system within a manufacturing company. This article proposes a model, the use of which will allow the level of automation of a maintenance department to be forecast, depending on the effectivity of the use of the Manufacturing Executions System (MES) within a company. The model was built on the basis of the actual times of business processes completed which were supported by MES in the maintenance departments of two manufacturing enterprises using artificial neural network. As a result of research experiments, it was confirmed that the longer the time taken to complete business processes supported by MES, the higher is the degree of automation in a maintenance department.
Keywords:
References
Bojar, W., & Żółtowski, M. (2011). Procesy wspomagania decyzji w zakresie utrzymania ruchu i eksploatacji maszyn. Studia i Materialy Polskiego Stowarzyszenia Zarzadzania Wiedza, 40, 71–84.
Gawlik, J., & Kiełbus, A. (2012). Zastosowania metod sztucznej inteligencji w nadzorowaniu urządzeń technologicznych i jakości wyrobów. In T. Sikora & M. Giemza (Eds.), Praktyka zarządzania jakością w XXI wieku (pp. 508-534). Kraków, Poland: Wydawnictwo Naukowe PTTŻ.
Huda, A. N., & Taib, S. (2013). Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment. Applied Thermal Engineering, 61(2), 220–227. https://doi.org/10.1016/j.applthermaleng.2013.07.028 DOI: https://doi.org/10.1016/j.applthermaleng.2013.07.028
Jacobson, S., Masson, C., Smith, A. & Souza, J. (2005). AMR Research Report 18059, MES Market Rides Perfect Storm Through $1 B Barrier. AMR Research, 2–18.
Jacobson, S. & Masson, C. (2006). Eyelit: MES Lite: Building MES Composite Applications With Operations Process Management. Retrieved from http://eyelit.com/simon.html.
Kosicka, E., Mazurkiewicz, D., & Gola, A. (2016). Problemy wspomagania decyzji w systemach utrzymania ruchu. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 4, 49–52. https://doi.org/10.5604/01.3001.0009.5189 DOI: https://doi.org/10.5604/01.3001.0009.5189
Li, Z., Wang, Y., & Wang, K. S. (2017). Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Advances in Manufacturing, 5(4), 377–387.
https://doi.org/10.1007/s40436-017-0203-8 DOI: https://doi.org/10.1007/s40436-017-0203-8
Lipski J., & Pizoń J. (2014), Sztuczna inteligencja w inżynierii produkcji. In J. Lipski, A. Świć, & A. Bojanowska (Eds.), Innowacyjne metody w inżynierii produkcji (pp. 11–24). Lublin, Poland: Wydawnictwo Politechniki Lubelskiej.
Raptodimos, Y., & Lazakis, I. (2016). An artificial neural network approach for predicting the performance of ship machinery equipment. In Maritime Safety and Operations 2016 Conference Proceedings (pp. 95–101). Glasgow, UK: University of Strathclyde Publishing.
Seitz K.-F. & Nyhuis P. (2015). Cyper-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control. CIRP Procedia, 32, 92–97. https://doi.org/10.1016/j.procir.2015.02.220 DOI: https://doi.org/10.1016/j.procir.2015.02.220
Wu, B., Tian, Z., & Chen, M. (2013). Condition‐based maintenance optimization using neural network‐based health condition prediction. Quality and Reliability Engineering International, 29(8), 1151–1163. https://doi.org/10.1002/qre.1466 DOI: https://doi.org/10.1002/qre.1466
Article Details
Abstract views: 278
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
