A MODEL FOR ASSESSING THE LEVEL OF AUTOMATION OF A MAINTENANCE DEPARTMENT USING ARTIFICIAL NEURAL NETWORK

Daniel HALIKOWSKI


University of Applied Science in Nysa, Institute of Technical Science, ul. Armii Krajowej 7, 48-300 Nysa (Poland)

Justyna PATALAS-MALISZEWSKA


University of Zielona Góra, Faculty of Mechanical Engineering, Institute of Computer Science and Production Management, Licealna 9 Street, 65-417 Zielona Góra (Poland)

Małgorzata SKRZESZEWSKA


* University of Zielona Góra, Faculty of Mechanical Engineering, Institute of Computer Science and Production Management, Licealna 9 Street, 65-417 Zielona Góra (Poland)

Abstract

With regard to adapting enterprise to the Industry 4.0 concept, the first element should be the implementation and use of an information system within a manufacturing company. This article proposes a model, the use of which will allow the level of automation of a maintenance department to be forecast, depending on the effectivity of the use of the Manufacturing Executions System (MES) within a company. The model was built on the basis of the actual times of business processes completed which were supported by MES in the maintenance departments of two manufacturing enterprises using artificial neural network. As a result of research experiments, it was confirmed that the longer the time taken to complete business processes supported by MES, the higher is the degree of automation in a maintenance department.


Keywords:

Maintenance department, Artificial neural network, Manufacturing companies

Bojar, W., & Żółtowski, M. (2011). Procesy wspomagania decyzji w zakresie utrzymania ruchu i eksploatacji maszyn. Studia i Materialy Polskiego Stowarzyszenia Zarzadzania Wiedza, 40, 71–84.
  Google Scholar

Gawlik, J., & Kiełbus, A. (2012). Zastosowania metod sztucznej inteligencji w nadzorowaniu urządzeń technologicznych i jakości wyrobów. In T. Sikora & M. Giemza (Eds.), Praktyka zarządzania jakością w XXI wieku (pp. 508-534). Kraków, Poland: Wydawnictwo Naukowe PTTŻ.
  Google Scholar

Huda, A. N., & Taib, S. (2013). Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment. Applied Thermal Engineering, 61(2), 220–227. https://doi.org/10.1016/j.applthermaleng.2013.07.028
DOI: https://doi.org/10.1016/j.applthermaleng.2013.07.028   Google Scholar

Jacobson, S., Masson, C., Smith, A. & Souza, J. (2005). AMR Research Report 18059, MES Market Rides Perfect Storm Through $1 B Barrier. AMR Research, 2–18.
  Google Scholar

Jacobson, S. & Masson, C. (2006). Eyelit: MES Lite: Building MES Composite Applications With Operations Process Management. Retrieved from http://eyelit.com/simon.html.
  Google Scholar

Kosicka, E., Mazurkiewicz, D., & Gola, A. (2016). Problemy wspomagania decyzji w systemach utrzymania ruchu. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 4, 49–52. https://doi.org/10.5604/01.3001.0009.5189
DOI: https://doi.org/10.5604/01.3001.0009.5189   Google Scholar

Li, Z., Wang, Y., & Wang, K. S. (2017). Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Advances in Manufacturing, 5(4), 377–387.
  Google Scholar

https://doi.org/10.1007/s40436-017-0203-8
DOI: https://doi.org/10.1007/s40436-017-0203-8   Google Scholar

Lipski J., & Pizoń J. (2014), Sztuczna inteligencja w inżynierii produkcji. In J. Lipski, A. Świć, & A. Bojanowska (Eds.), Innowacyjne metody w inżynierii produkcji (pp. 11–24). Lublin, Poland: Wydawnictwo Politechniki Lubelskiej.
  Google Scholar

Raptodimos, Y., & Lazakis, I. (2016). An artificial neural network approach for predicting the performance of ship machinery equipment. In Maritime Safety and Operations 2016 Conference Proceedings (pp. 95–101). Glasgow, UK: University of Strathclyde Publishing.
  Google Scholar

Seitz K.-F. & Nyhuis P. (2015). Cyper-Physical Production Systems Combined with Logistic Models – A Learning Factory Concept for an Improved Production Planning and Control. CIRP Procedia, 32, 92–97. https://doi.org/10.1016/j.procir.2015.02.220
DOI: https://doi.org/10.1016/j.procir.2015.02.220   Google Scholar

Wu, B., Tian, Z., & Chen, M. (2013). Condition‐based maintenance optimization using neural network‐based health condition prediction. Quality and Reliability Engineering International, 29(8), 1151–1163. https://doi.org/10.1002/qre.1466
DOI: https://doi.org/10.1002/qre.1466   Google Scholar

Download


Published
2018-12-30

Cited by

HALIKOWSKI, D., PATALAS-MALISZEWSKA, J., & SKRZESZEWSKA, M. (2018). A MODEL FOR ASSESSING THE LEVEL OF AUTOMATION OF A MAINTENANCE DEPARTMENT USING ARTIFICIAL NEURAL NETWORK. Applied Computer Science, 14(4), 70–80. https://doi.org/10.23743/acs-2018-30

Authors

Daniel HALIKOWSKI 

University of Applied Science in Nysa, Institute of Technical Science, ul. Armii Krajowej 7, 48-300 Nysa Poland

Authors

Justyna PATALAS-MALISZEWSKA 

University of Zielona Góra, Faculty of Mechanical Engineering, Institute of Computer Science and Production Management, Licealna 9 Street, 65-417 Zielona Góra Poland

Authors

Małgorzata SKRZESZEWSKA 

* University of Zielona Góra, Faculty of Mechanical Engineering, Institute of Computer Science and Production Management, Licealna 9 Street, 65-417 Zielona Góra Poland

Statistics

Abstract views: 173
PDF downloads: 23


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.