Belov, V. S., & Ivanov, G. M. (1975). Improving the accuracy of surface broaching machines. Stanki i Instrumenty, 46(7), 6–8.
Boldyrev, I. S., Shchurov, I. A., & Nikonov, A. V. (2016). Numerical Simulation of the Aluminum 6061-T6 Cutting and theEffect of the Constitutive Material Model and Failure Criteria on Cutting Forces’ Prediction. Procedia Engineering, 150, 866–870. https://doi.org/10.1016/j.proeng.2016.07.031
DOI: https://doi.org/10.1016/j.proeng.2016.07.031
Dębski, H., & Sadowski, T. (2014). Modelling of microcracks initiation and evolution along interfaces of the WC/Co composite by the finite element method. Computational Material Science, 83, 403–411. https://doi.org/10.1016/j.commatsci.2013.11.045
DOI: https://doi.org/10.1016/j.commatsci.2013.11.045
Górski, E. (1967). Narzędzia skrawające kształtowe. Warszawa: WNT.
Grzesik, W. (2010). Podstawy skrawania materiałów konstrukcyjnych. Warszawa: WNT.
Kokmeyer, E. (1984). Better Broaching Operations. Society of Manufacturing Engineers Madison.
Kokturk, U., & Budak, E. (2004). Optimization of broaching tool design. Proceedings of the Intelligent Computation in Manufacturing Engineering – 4 Conference, CIRP ICME ’04. Sorrento.
Kosmol, J., & Mieszczak, W. (2009). Zastosowanie metody elementów skończonych do modelowania procesu wiercenia. Modelowanie Inżynierskie, 37, 169–176.
Lipski, J., Litak, G., Rusinek, R., Szabelski, K., Teter, A., Warmiński, J., & Zaleski, K. (2002). Surface quality of a work material's influence on the vibrations of the cutting process. Journal of Sound and Vibration, 252(4), s. 729–737. https://doi.org/10.1006/jsvi.2001.3943
DOI: https://doi.org/10.1006/jsvi.2001.3943
Monday, C. (1960). Broaching. London: The Machinery Publishing Co.
Sajeev, V., Vijaraghavan, L., & Rao, U.R. (2000). An analysis of the effects of burnishing in internal broaching. International Journal of Mechanical Engineering Education, 28(2), 163–173.
DOI: https://doi.org/10.7227/IJMEE.28.2.5
Schulze, V., Zanger, F., & Boev, N. (2013). Numerical Investigations on Changes of the Main Shear Plane while Broaching. Procedia CIRP, 8, 246–251. https://doi.org/10.1016/j.procir.2013.06.097
DOI: https://doi.org/10.1016/j.procir.2013.06.097
Xiangwei, K., Bin, L., Zhibo, J., & Wenran, G. (2011). Broaching Performance of Superalloy GH4169 Based on FEM. Journal of Materials Science & Technology, 27(12), 1178–1184. https://doi.org/10.1016/S1005-0302(12)60015-2
DOI: https://doi.org/10.1016/S1005-0302(12)60015-2
Vogtel, P., Klocke, F., Lung, D., & Terzi, S. (2015). Automatic Broaching Tool Design by Technological and Geometrical Optimization. Procedia CIRP, 33, 496–501. https://doi.org/10.1016/j.procir.2015.06.061
DOI: https://doi.org/10.1016/j.procir.2015.06.061
Zhang, Y., Outeiro, J. C., & Mabrouki, T. (2015). On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP, 31, 112-117. https://doi.org/10.1016/j.procir.2015.03.052
DOI: https://doi.org/10.1016/j.procir.2015.03.052