CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD
Stanisław BŁAWUCKI
s.blawucki@pollub.plPolitechnika Lubelska, Nadbystrzycka 36, 20-618 Lublin (Poland)
Kazimierz ZALESKI
Politechnika Lubelska, Nadbystrzycka 36, 20-618 Lublin (Poland)
Abstract
The paper presents results of numerical FEM analyses of the process of broaching the groove using the Explicit module of the ABAQUS program. The impact of the blade geometry was presented and of the selected technological parameters of processing when cutting the aluminium EN-AW 6061-T6 alloy on the load of the broach blade during its operation. This article shows influence of value of rake and clearance angle onto deformations of the tool’s cutting edge in the transverse direction. An interaction between broach blade shape and reduced stress in the area of cutting edge was presented. The optimum geometry of the cutting tool was proposed.
Keywords:
broaching, broach, FEM, ABAQUS, alloy EN-AW 6061-T6References
Belov, V. S., & Ivanov, G. M. (1975). Improving the accuracy of surface broaching machines. Stanki i Instrumenty, 46(7), 6–8.
Google Scholar
Boldyrev, I. S., Shchurov, I. A., & Nikonov, A. V. (2016). Numerical Simulation of the Aluminum 6061-T6 Cutting and theEffect of the Constitutive Material Model and Failure Criteria on Cutting Forces’ Prediction. Procedia Engineering, 150, 866–870. https://doi.org/10.1016/j.proeng.2016.07.031
DOI: https://doi.org/10.1016/j.proeng.2016.07.031
Google Scholar
Dębski, H., & Sadowski, T. (2014). Modelling of microcracks initiation and evolution along interfaces of the WC/Co composite by the finite element method. Computational Material Science, 83, 403–411. https://doi.org/10.1016/j.commatsci.2013.11.045
DOI: https://doi.org/10.1016/j.commatsci.2013.11.045
Google Scholar
Górski, E. (1967). Narzędzia skrawające kształtowe. Warszawa: WNT.
Google Scholar
Grzesik, W. (2010). Podstawy skrawania materiałów konstrukcyjnych. Warszawa: WNT.
Google Scholar
Kokmeyer, E. (1984). Better Broaching Operations. Society of Manufacturing Engineers Madison.
Google Scholar
Kokturk, U., & Budak, E. (2004). Optimization of broaching tool design. Proceedings of the Intelligent Computation in Manufacturing Engineering – 4 Conference, CIRP ICME ’04. Sorrento.
Google Scholar
Kosmol, J., & Mieszczak, W. (2009). Zastosowanie metody elementów skończonych do modelowania procesu wiercenia. Modelowanie Inżynierskie, 37, 169–176.
Google Scholar
Lipski, J., Litak, G., Rusinek, R., Szabelski, K., Teter, A., Warmiński, J., & Zaleski, K. (2002). Surface quality of a work material's influence on the vibrations of the cutting process. Journal of Sound and Vibration, 252(4), s. 729–737. https://doi.org/10.1006/jsvi.2001.3943
DOI: https://doi.org/10.1006/jsvi.2001.3943
Google Scholar
Monday, C. (1960). Broaching. London: The Machinery Publishing Co.
Google Scholar
Sajeev, V., Vijaraghavan, L., & Rao, U.R. (2000). An analysis of the effects of burnishing in internal broaching. International Journal of Mechanical Engineering Education, 28(2), 163–173.
DOI: https://doi.org/10.7227/IJMEE.28.2.5
Google Scholar
Schulze, V., Zanger, F., & Boev, N. (2013). Numerical Investigations on Changes of the Main Shear Plane while Broaching. Procedia CIRP, 8, 246–251. https://doi.org/10.1016/j.procir.2013.06.097
DOI: https://doi.org/10.1016/j.procir.2013.06.097
Google Scholar
Xiangwei, K., Bin, L., Zhibo, J., & Wenran, G. (2011). Broaching Performance of Superalloy GH4169 Based on FEM. Journal of Materials Science & Technology, 27(12), 1178–1184. https://doi.org/10.1016/S1005-0302(12)60015-2
DOI: https://doi.org/10.1016/S1005-0302(12)60015-2
Google Scholar
Vogtel, P., Klocke, F., Lung, D., & Terzi, S. (2015). Automatic Broaching Tool Design by Technological and Geometrical Optimization. Procedia CIRP, 33, 496–501. https://doi.org/10.1016/j.procir.2015.06.061
DOI: https://doi.org/10.1016/j.procir.2015.06.061
Google Scholar
Zhang, Y., Outeiro, J. C., & Mabrouki, T. (2015). On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP, 31, 112-117. https://doi.org/10.1016/j.procir.2015.03.052
DOI: https://doi.org/10.1016/j.procir.2015.03.052
Google Scholar
Authors
Stanisław BŁAWUCKIs.blawucki@pollub.pl
Politechnika Lubelska, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Kazimierz ZALESKIPolitechnika Lubelska, Nadbystrzycka 36, 20-618 Lublin Poland
Statistics
Abstract views: 67PDF downloads: 9
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Sana KOUBAA, Jamel MARS, Fakhreddine DAMMAK, EFFICIENT NUMERICAL MODELLING OF FUNCTIONALLY GRADED SHELL MECHANICAL BEHAVIOR , Applied Computer Science: Vol. 15 No. 1 (2019)
- Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran, A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL , Applied Computer Science: Vol. 19 No. 2 (2023)
- Jarosław ZUBRZYCKI, Natalia SMIDOVA, Jakub LITAK, Andrei AUSIYEVICH, NUMERICAL ANALYSIS OF SPINAL LOADS IN SPONDYLOLISTHESIS TREATMENT USING PEDICLE SCREWS – PRELIMINARY RESEARCH , Applied Computer Science: Vol. 13 No. 3 (2017)
You may also start an advanced similarity search for this article.