CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS
Article Sidebar
Open full text
Issue Vol. 13 No. 1 (2017)
-
AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT
Paweł MAGRYTA5-19
-
MODELLING OF A LARGE ROTARY HEAT EXCHANGER
Tytus TULWIN20-28
-
INFORMATION TECHNOLOGY OF STOCK INDEXES FORECASTING ON THE BASE OF FUZZY NEURAL NETWORKS
Yuriy TRYUS, Nataliya ANTIPOVA, Kateryna ZHURAVEL, Grygoriy ZASPA29-40
-
CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD
Stanisław BŁAWUCKI, Kazimierz ZALESKI41-50
-
CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS
Michał BIAŁY, Marcin SZLACHETKA51-60
-
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Evans BAIDOO61-74
-
USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY
Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA75-84
-
SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION
Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA85-96
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
m.szlachetka@dydaktyka.pswbp.pl
Abstract
The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the selected kinematic pairs.
Keywords:
References
Apanowicz, J. (2002). Metodologia Ogólna. Gdynia: Wydawnictwo Diecezji IV pińskiej „BERNARDINIUM”.
Balyakin, V., & Kosenok, B. (2015). Study of the Dynamic Characteristics of a Two-Cylinder Internal Combustion Engine Using Vector Model. Procedia Engineering, 106, 183–191. https://doi.org/10.1016/j.proeng.2015.06.023 DOI: https://doi.org/10.1016/j.proeng.2015.06.023
Basic ADAMS Full Simulation Training Guide (2001). Version 11.0 part number 110viewtr-03. Mechanical Dynamics, Incorporated Biały, M., Wendeker, M., Szlachetka, M., & Magryta, P. (2013). Knocking combustion influence on the load of the piston-crank system using MSC ADAMS software. Combustion Engines, 52(3), 421–427.
Bukovan, J., Jakubovicova, L., Sapieta, M., & Sapietova, A. (2017). Analysis and implementation of input load effects on an air compressor piston in MSC.ADAMS. Procedia Engineering, 177, 554-561. https://doi.org/10.1016/j.proeng.2017.02.260 DOI: https://doi.org/10.1016/j.proeng.2017.02.260
Chang, K.-H., (2014). Assembly Modeling. Chapter 4. In Product Design Modeling Using CAD/CAE (pp. 169–232). Boston: Academic Press. https://doi.org/10.1016/B978-0-12-398513-2.00004-X DOI: https://doi.org/10.1016/B978-0-12-398513-2.00004-X
Czyż, Z., & Magryta, P. (2016). Analysis of the operating load of foil-air bearings in the gas generator of the turbine engine during the acceleration and deceleration maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(4), 507–513. https://doi.org/10.17531/ein.2016.4.5. DOI: https://doi.org/10.17531/ein.2016.4.5
Czyż, Z., Kayumov, R., & Montusiewicz, J. (2015). Selected methods of making threedimensional virtual models of museum ceramic objects. Applied Computer Science, 11(1), 51–65.
Gmpowertrain. (n.d.). Retrieved February 2, 2017, from Gmpowertrain website http://gmpowertrain.com
Hroncová, D., Binda, M., Šargaa, P., & Kicák, F. (2012). Kinematical analysis of crank slider mechanism using MSC Adams/View. Procedia Engineering, 48, 213–222. https://doi.org/10.1016/j.proeng.2012.09.507 DOI: https://doi.org/10.1016/j.proeng.2012.09.507
Ionescu, F. (2007). Modelling and simulation in mechatronics. IFAC Proceedings Volumes, 40(18), 301–312. https://doi.org/10.3182/20070927-4-RO-3905.00051 DOI: https://doi.org/10.3182/20070927-4-RO-3905.00051
Kolator, B., & Janulin, M. (2014). Wyznaczanie stanów trakcyjnych pojazdu za pomocą hamowni podwoziowej LPS 3000. Studies & Proceedings of Polish Association for Knowledge Management, 139–150.
MSC Software. (n.d.). Retrieved February 2, 2017, from MSC Software website http://www.mscsoftware.com
Opel diagnostyka. (n.d.). Retrieved February 2, 2017, from Opel website https://opel2015.wordpress.com
Stojanovic, B., & Glisovic, J. (2016). Automotive Engine Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-803581-8.01946-9
Sun, Z., & Zhang, C. (2017). Trajectory-based combustion control for renewable fuels in free piston engines. Applied Energy, 187, 72-83. https://doi.org/10.1016/j.apenergy.2016.11.045 DOI: https://doi.org/10.1016/j.apenergy.2016.11.045
Tomić, R., Sjerić, M., & Lulić, Z. (2012). The optimization of crankshaft offset of spark ignition engine. Journal of Trends in the Development of Machinery and Associated Technology, 16(1), 211–214.
Troncossi, M., Ricci, R., & Rivola A. (2011). Model Reduction of the Flexible Rotating Crankshaft of a Motorcycle Engine Cranktrain. International Journal of Rotating Machinery, 2011, Article ID 143523, 9 pages. https://doi.org/10.1155/2011/143523 DOI: https://doi.org/10.1155/2011/143523
Wendeker, M., & Czyż, Z. (2016). Analysis of the bearing nodes loads of turbine engine at an unmanned helicopter during a jump up and jump down maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(1), 89–97. https://doi.org/10.17531/ein.2016.1.12 DOI: https://doi.org/10.17531/ein.2016.1.12
Zhenga, E., & Zhou, X. (2014). Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mechanism and Machine Theory, 74, 10-30. https://doi.org/10.1016/j.mechmachtheory.2013.11.015 DOI: https://doi.org/10.1016/j.mechmachtheory.2013.11.015
Article Details
Abstract views: 441
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
