CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS

Michał BIAŁY

m.bialy@pollub.pl
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin (Poland)

Marcin SZLACHETKA


Department of Mechanics and Mechanical Engineering, Faculty of Economic Sciences and Technology, The Pope John Paul II State School Of Higher Education in Biala Podlaska, Sidorska Street 95, 21-500 Biala-Podlaska (Poland)

Abstract

The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of  the  gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to  MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t  determine the load distribution in a dynamic state for the selected kinematic pairs.


Keywords:

CAD/CAM/CAE, reverse engineering, the internal combustion engine

Apanowicz, J. (2002). Metodologia Ogólna. Gdynia: Wydawnictwo Diecezji IV pińskiej „BERNARDINIUM”.
  Google Scholar

Balyakin, V., & Kosenok, B. (2015). Study of the Dynamic Characteristics of a Two-Cylinder Internal Combustion Engine Using Vector Model. Procedia Engineering, 106, 183–191. https://doi.org/10.1016/j.proeng.2015.06.023
DOI: https://doi.org/10.1016/j.proeng.2015.06.023   Google Scholar

Basic ADAMS Full Simulation Training Guide (2001). Version 11.0 part number 110viewtr-03. Mechanical Dynamics, Incorporated Biały, M., Wendeker, M., Szlachetka, M., & Magryta, P. (2013). Knocking combustion influence on the load of the piston-crank system using MSC ADAMS software. Combustion Engines, 52(3), 421–427.
  Google Scholar

Bukovan, J., Jakubovicova, L., Sapieta, M., & Sapietova, A. (2017). Analysis and implementation of input load effects on an air compressor piston in MSC.ADAMS. Procedia Engineering, 177, 554-561. https://doi.org/10.1016/j.proeng.2017.02.260
DOI: https://doi.org/10.1016/j.proeng.2017.02.260   Google Scholar

Chang, K.-H., (2014). Assembly Modeling. Chapter 4. In Product Design Modeling Using CAD/CAE (pp. 169–232). Boston: Academic Press. https://doi.org/10.1016/B978-0-12-398513-2.00004-X
DOI: https://doi.org/10.1016/B978-0-12-398513-2.00004-X   Google Scholar

Czyż, Z., & Magryta, P. (2016). Analysis of the operating load of foil-air bearings in the gas generator of the turbine engine during the acceleration and deceleration maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(4), 507–513. https://doi.org/10.17531/ein.2016.4.5.
DOI: https://doi.org/10.17531/ein.2016.4.5   Google Scholar

Czyż, Z., Kayumov, R., & Montusiewicz, J. (2015). Selected methods of making threedimensional virtual models of museum ceramic objects. Applied Computer Science, 11(1), 51–65.
  Google Scholar

Gmpowertrain. (n.d.). Retrieved February 2, 2017, from Gmpowertrain website http://gmpowertrain.com
  Google Scholar

Hroncová, D., Binda, M., Šargaa, P., & Kicák, F. (2012). Kinematical analysis of crank slider mechanism using MSC Adams/View. Procedia Engineering, 48, 213–222. https://doi.org/10.1016/j.proeng.2012.09.507
DOI: https://doi.org/10.1016/j.proeng.2012.09.507   Google Scholar

Ionescu, F. (2007). Modelling and simulation in mechatronics. IFAC Proceedings Volumes, 40(18), 301–312. https://doi.org/10.3182/20070927-4-RO-3905.00051
DOI: https://doi.org/10.3182/20070927-4-RO-3905.00051   Google Scholar

Kolator, B., & Janulin, M. (2014). Wyznaczanie stanów trakcyjnych pojazdu za pomocą hamowni podwoziowej LPS 3000. Studies & Proceedings of Polish Association for Knowledge Management, 139–150.
  Google Scholar

MSC Software. (n.d.). Retrieved February 2, 2017, from MSC Software website http://www.mscsoftware.com
  Google Scholar

Opel diagnostyka. (n.d.). Retrieved February 2, 2017, from Opel website https://opel2015.wordpress.com
  Google Scholar

Stojanovic, B., & Glisovic, J. (2016). Automotive Engine Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier.
DOI: https://doi.org/10.1016/B978-0-12-803581-8.01946-9   Google Scholar

Sun, Z., & Zhang, C. (2017). Trajectory-based combustion control for renewable fuels in free piston engines. Applied Energy, 187, 72-83. https://doi.org/10.1016/j.apenergy.2016.11.045
DOI: https://doi.org/10.1016/j.apenergy.2016.11.045   Google Scholar

Tomić, R., Sjerić, M., & Lulić, Z. (2012). The optimization of crankshaft offset of spark ignition engine. Journal of Trends in the Development of Machinery and Associated Technology, 16(1), 211–214.
  Google Scholar

Troncossi, M., Ricci, R., & Rivola A. (2011). Model Reduction of the Flexible Rotating Crankshaft of a Motorcycle Engine Cranktrain. International Journal of Rotating Machinery, 2011, Article ID 143523, 9 pages. https://doi.org/10.1155/2011/143523
DOI: https://doi.org/10.1155/2011/143523   Google Scholar

Wendeker, M., & Czyż, Z. (2016). Analysis of the bearing nodes loads of turbine engine at an unmanned helicopter during a jump up and jump down maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(1), 89–97. https://doi.org/10.17531/ein.2016.1.12
DOI: https://doi.org/10.17531/ein.2016.1.12   Google Scholar

Zhenga, E., & Zhou, X. (2014). Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mechanism and Machine Theory, 74, 10-30. https://doi.org/10.1016/j.mechmachtheory.2013.11.015
DOI: https://doi.org/10.1016/j.mechmachtheory.2013.11.015   Google Scholar

Download


Published
2017-03-30

Cited by

BIAŁY, M., & SZLACHETKA, M. (2017). CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS. Applied Computer Science, 13(1), 51–60. https://doi.org/10.23743/acs-2017-05

Authors

Michał BIAŁY 
m.bialy@pollub.pl
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin Poland

Authors

Marcin SZLACHETKA 

Department of Mechanics and Mechanical Engineering, Faculty of Economic Sciences and Technology, The Pope John Paul II State School Of Higher Education in Biala Podlaska, Sidorska Street 95, 21-500 Biala-Podlaska Poland

Statistics

Abstract views: 200
PDF downloads: 29


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.