CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS
Michał BIAŁY
m.bialy@pollub.plDepartment of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin (Poland)
Marcin SZLACHETKA
Department of Mechanics and Mechanical Engineering, Faculty of Economic Sciences and Technology, The Pope John Paul II State School Of Higher Education in Biala Podlaska, Sidorska Street 95, 21-500 Biala-Podlaska (Poland)
Abstract
The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the selected kinematic pairs.
Keywords:
CAD/CAM/CAE, reverse engineering, the internal combustion engineReferences
Apanowicz, J. (2002). Metodologia Ogólna. Gdynia: Wydawnictwo Diecezji IV pińskiej „BERNARDINIUM”.
Google Scholar
Balyakin, V., & Kosenok, B. (2015). Study of the Dynamic Characteristics of a Two-Cylinder Internal Combustion Engine Using Vector Model. Procedia Engineering, 106, 183–191. https://doi.org/10.1016/j.proeng.2015.06.023
DOI: https://doi.org/10.1016/j.proeng.2015.06.023
Google Scholar
Basic ADAMS Full Simulation Training Guide (2001). Version 11.0 part number 110viewtr-03. Mechanical Dynamics, Incorporated Biały, M., Wendeker, M., Szlachetka, M., & Magryta, P. (2013). Knocking combustion influence on the load of the piston-crank system using MSC ADAMS software. Combustion Engines, 52(3), 421–427.
Google Scholar
Bukovan, J., Jakubovicova, L., Sapieta, M., & Sapietova, A. (2017). Analysis and implementation of input load effects on an air compressor piston in MSC.ADAMS. Procedia Engineering, 177, 554-561. https://doi.org/10.1016/j.proeng.2017.02.260
DOI: https://doi.org/10.1016/j.proeng.2017.02.260
Google Scholar
Chang, K.-H., (2014). Assembly Modeling. Chapter 4. In Product Design Modeling Using CAD/CAE (pp. 169–232). Boston: Academic Press. https://doi.org/10.1016/B978-0-12-398513-2.00004-X
DOI: https://doi.org/10.1016/B978-0-12-398513-2.00004-X
Google Scholar
Czyż, Z., & Magryta, P. (2016). Analysis of the operating load of foil-air bearings in the gas generator of the turbine engine during the acceleration and deceleration maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(4), 507–513. https://doi.org/10.17531/ein.2016.4.5.
DOI: https://doi.org/10.17531/ein.2016.4.5
Google Scholar
Czyż, Z., Kayumov, R., & Montusiewicz, J. (2015). Selected methods of making threedimensional virtual models of museum ceramic objects. Applied Computer Science, 11(1), 51–65.
Google Scholar
Gmpowertrain. (n.d.). Retrieved February 2, 2017, from Gmpowertrain website http://gmpowertrain.com
Google Scholar
Hroncová, D., Binda, M., Šargaa, P., & Kicák, F. (2012). Kinematical analysis of crank slider mechanism using MSC Adams/View. Procedia Engineering, 48, 213–222. https://doi.org/10.1016/j.proeng.2012.09.507
DOI: https://doi.org/10.1016/j.proeng.2012.09.507
Google Scholar
Ionescu, F. (2007). Modelling and simulation in mechatronics. IFAC Proceedings Volumes, 40(18), 301–312. https://doi.org/10.3182/20070927-4-RO-3905.00051
DOI: https://doi.org/10.3182/20070927-4-RO-3905.00051
Google Scholar
Kolator, B., & Janulin, M. (2014). Wyznaczanie stanów trakcyjnych pojazdu za pomocą hamowni podwoziowej LPS 3000. Studies & Proceedings of Polish Association for Knowledge Management, 139–150.
Google Scholar
MSC Software. (n.d.). Retrieved February 2, 2017, from MSC Software website http://www.mscsoftware.com
Google Scholar
Opel diagnostyka. (n.d.). Retrieved February 2, 2017, from Opel website https://opel2015.wordpress.com
Google Scholar
Stojanovic, B., & Glisovic, J. (2016). Automotive Engine Materials. In Reference Module in Materials Science and Materials Engineering. Elsevier.
DOI: https://doi.org/10.1016/B978-0-12-803581-8.01946-9
Google Scholar
Sun, Z., & Zhang, C. (2017). Trajectory-based combustion control for renewable fuels in free piston engines. Applied Energy, 187, 72-83. https://doi.org/10.1016/j.apenergy.2016.11.045
DOI: https://doi.org/10.1016/j.apenergy.2016.11.045
Google Scholar
Tomić, R., Sjerić, M., & Lulić, Z. (2012). The optimization of crankshaft offset of spark ignition engine. Journal of Trends in the Development of Machinery and Associated Technology, 16(1), 211–214.
Google Scholar
Troncossi, M., Ricci, R., & Rivola A. (2011). Model Reduction of the Flexible Rotating Crankshaft of a Motorcycle Engine Cranktrain. International Journal of Rotating Machinery, 2011, Article ID 143523, 9 pages. https://doi.org/10.1155/2011/143523
DOI: https://doi.org/10.1155/2011/143523
Google Scholar
Wendeker, M., & Czyż, Z. (2016). Analysis of the bearing nodes loads of turbine engine at an unmanned helicopter during a jump up and jump down maneuver. Eksploatacja i Niezawodnosc – Maintenance and Reliability, 18(1), 89–97. https://doi.org/10.17531/ein.2016.1.12
DOI: https://doi.org/10.17531/ein.2016.1.12
Google Scholar
Zhenga, E., & Zhou, X. (2014). Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mechanism and Machine Theory, 74, 10-30. https://doi.org/10.1016/j.mechmachtheory.2013.11.015
DOI: https://doi.org/10.1016/j.mechmachtheory.2013.11.015
Google Scholar
Authors
Michał BIAŁYm.bialy@pollub.pl
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka Street 36, 20-618 Lublin Poland
Authors
Marcin SZLACHETKADepartment of Mechanics and Mechanical Engineering, Faculty of Economic Sciences and Technology, The Pope John Paul II State School Of Higher Education in Biala Podlaska, Sidorska Street 95, 21-500 Biala-Podlaska Poland
Statistics
Abstract views: 200PDF downloads: 29
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Danuta MIEDZIŃSKA, Ewelina MAŁEK, Arkadiusz POPŁAWSKI, NUMERICAL MODELLING OF RESINS USED IN STEREOLITOGRAPHY RAPID PROTOTYPING , Applied Computer Science: Vol. 15 No. 4 (2019)
- Lucian LUPŞA-TĂTARU, CUSTOMIZING AUDIO FADES WITH A VIEW TO REAL-TIME PROCESSING , Applied Computer Science: Vol. 15 No. 4 (2019)
- Bartosz CIEŚLA, Grzegorz GUNIA, DEVELOPMENT OF INTEGRATED MANAGEMENT INFORMATION SYSTEMS IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 15 No. 4 (2019)
- Wojciech DANILCZUK, Arkadiusz GOLA, COMPUTER-AIDED MATERIAL DEMAND PLANNING USING ERP SYSTEMS AND BUSINESS INTELLIGENCE TECHNOLOGY , Applied Computer Science: Vol. 16 No. 3 (2020)
- Michał TOMCZYK, Anna PLICHTA, Mariusz MIKULSKI, APPLICATION OF WAVELET – NEURAL METHOD TO DETECT BACKLASH ZONE IN ELECTROMECHANICAL SYSTEMS GENERATING NOISES , Applied Computer Science: Vol. 15 No. 4 (2019)
- Rafał KWOKA, Janusz KOZAK, Michał MAJKA, TESTS OF HTS 2G SUPERCONDUCTING TAPES USING THE LABVIEW ENVIRONMENT , Applied Computer Science: Vol. 14 No. 1 (2018)
- Gamze Ogcu KAYA, Ali TURKYILMAZ, INTERMITTENT DEMAND FORECASTING USING DATA MINING TECHNIQUES , Applied Computer Science: Vol. 14 No. 2 (2018)
- Damian KRASKA, Tomasz TRZEPIECIŃSKI, FINITE ELEMENT BASED PREDICTION OF DEFORMATION IN SHEET METAL FORMING PROCESS , Applied Computer Science: Vol. 14 No. 3 (2018)
- Nasir ALAWAD, Afaf ALSEADY, FUZZY CONTROLLER OF MODEL REDUCTION DISTILLATION COLUMN WITH MINIMAL RULES , Applied Computer Science: Vol. 16 No. 2 (2020)
- Rawaa HAAMED, Ekhlas HAMEED, CONTROLLING THE MEAN ARTERIAL PRESSURE BY MODIFIED MODEL REFERENCE ADAPTIVE CONTROLLER BASED ON TWO OPTIMIZATION ALGORITHMS , Applied Computer Science: Vol. 16 No. 2 (2020)
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.