SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION
Tomasz CHMIELEWSKI
tomasz.chmielewski@pollub.plElectrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 38A, Lublin (Poland)
Katarzyna ZIELIŃSKA
Electrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 38A, Lublin (Poland)
Abstract
The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the selected kinematic pairs.
Keywords:
remote laboratory, iLab, virtual experimentReferences
Ayodele, K. P., Inyang, I. A., & Kehinde, L. O. (2015). An iLab for Teaching Advanced Logic Concepts With Hardware Descriptive Languages. IEEE Transactions on Education, 58(4), 262–268. https://doi.org/10.1109/te.2015.2395996
DOI: https://doi.org/10.1109/TE.2015.2395996
Google Scholar
Barrios, A., Panche, S., Duque, M., Grisales, V. H., Prieto, F., Villa, J. L., Chevrel, P., Canu, M. (2013). A multi-user remote academic laboratory system. Computers & Education, 62, 111-122. https://doi.org/10.1016/j.compedu.2012.10.011
DOI: https://doi.org/10.1016/j.compedu.2012.10.011
Google Scholar
Beghi, A., Cervato, A., & Rampazzo, M. (2015). A Remote Refrigeration Laboratory for Control Engineering Education. IFAC PapersOnLine, 48(29), 25–30. https://doi.org/10.1016/j.ifacol.2015.11.208
DOI: https://doi.org/10.1016/j.ifacol.2015.11.208
Google Scholar
Cazacu, D. (2014). A remote laboratory for frequency-response analysis of vibrating mechanical systems. 7th International Conference Interdisciplinarity in Engineering (Inter-Eng 2013), 12, 675–680. https://doi.org/10.1016/j.protcy.2013.12.548
DOI: https://doi.org/10.1016/j.protcy.2013.12.548
Google Scholar
Chen, X. M., & Gao, H. Y. (2012). A Remote PLC Laboratory Design and Realization. International Conference on Advances in Computational Modeling and Simulation, 31, 1168–1172. https://doi.org/10.1016/j.proeng.2012.01.1158
DOI: https://doi.org/10.1016/j.proeng.2012.01.1158
Google Scholar
Del Canto, C. J., Prada, M. A., Fuertes, J. J., Alonso, S., & Dominguez, M. (2015). Remote Laboratory for Cybersecurity of Industrial Control Systems. IFAC PapersOnLine, 48(29), 13–18. https://doi.org/10.1016/j.ifacol.2015.11.206
DOI: https://doi.org/10.1016/j.ifacol.2015.11.206
Google Scholar
DeLong, K., Harward, V. J., Bailey, P., Hardison, J., Kohse, G., & Ostrocsky, Y. (2010). Three online neutron beam experiments based on the iLab Shared Architecture. IEEE EDUCON 2010 Conference, 7(1), 145–150. https://doi.org/10.1109/EDUCON.2010.5492587
DOI: https://doi.org/10.1109/EDUCON.2010.5492587
Google Scholar
Estevez, C., & Wu, J. (2015). Recent advances in Green Internet of Things. 2015 7th IEEE Latin-American Conference on Communications (LATINCOM), 1–5. https://doi.org/10.1109/LATINCOM.2015.7430133
DOI: https://doi.org/10.1109/LATINCOM.2015.7430133
Google Scholar
Exel, M., Gentil, S., Michau, F., & Rey, D. (2000). Simulation workshop and remote laboratory: Two web-based training approaches for control. Proceedings of the 2000 in American Control Conference, 5, 3468–3472. https://doi.org/10.1109/ACC.2000.879213
DOI: https://doi.org/10.1109/ACC.2000.879213
Google Scholar
Gadzhanov, S. D., Nafalski, A., & Nedic, Z. (2014). LabVIEW based remote laboratory for advanced motion control. 2014 11th International Conference on Remote Engineering and Virtual Instrumentation (REV), 129–136. https://doi.org/10.1109/REV.2014.6784237
DOI: https://doi.org/10.1109/REV.2014.6784237
Google Scholar
German-Sallo, Z., Grif, H. S., & Gligor, A. (2015). Technical evaluation of remote laboratories in an engineering educational network. 8th International Conference Interdisciplinarity in Engineering, Inter-Eng 2014, 19, 1136–1141. https://doi.org/10.1016/j.protcy.2015.02.162
DOI: https://doi.org/10.1016/j.protcy.2015.02.162
Google Scholar
Guimaraes, E. G., Cardozo, E., Moraes, D. H., & Coelho, P. R. (2011). Design and Implementation Issues for Modern Remote Laboratories. IEEE Transactions on Learning Technologies, 4(2), 149–161. https://doi.org/10.1109/tlt.2010.22
DOI: https://doi.org/10.1109/TLT.2010.22
Google Scholar
Hardison, J. L., DeLong, K., Bailey, P. H., & Harward, V. J. (2008). Deploying interactive remote labs using the iLab Shared Architecture. 2008 38th Annual Frontiers in Education Conference, S2A-1-S2A-6. https://doi.org/10.1109/FIE.2008.4720536
DOI: https://doi.org/10.1109/FIE.2008.4720536
Google Scholar
Henke, K., Ostendorff, S., Wuttke, H., & Vogel, S. (2012). A grid concept for reliable, flexible and robust remote engineering laboratories. 9th International Conference on Remote Engineering and Virtual Instrumentation, 8, 42–49.
DOI: https://doi.org/10.3991/ijoe.v8iS3.2263
Google Scholar
Hercog, D., Gergic, B., Uran, S., & Jezernik, K. (2007). A DSP-based remote control laboratory. IEEE Transactions on Industrial Electronics, 54(6), 3057–3068. https://doi.org/10.1109/tie.2007.907009
DOI: https://doi.org/10.1109/TIE.2007.907009
Google Scholar
Nafalski, A., (2012). Remote Laboratories Developments in Electrical Engineering. Lublin: Politechnika Lubelska.
Google Scholar
Nedic, Z., Machotka, J., & Nafalski, A. (2003). Remote laboratories versus virtual and real laboratories. 33rd Annual Frontiers in Education, 2003. FIE 2003, 1, T3E-1-T3E-6. https://doi.org/10.1109/FIE.2003.1263343
DOI: https://doi.org/10.1109/FIE.2003.1263343
Google Scholar
Orduna, P., Garcia-Zubia, J., Irurzun, J., Lopez-de-Ipina, D., & Rodriguez-Gil, L. (2011). Enabling mobile access to Remote Laboratories. 2011 IEEE Global Engineering Education Conference (EDUCON), 312–318. https://doi.org/10.1109/EDUCON.2011.5773154
DOI: https://doi.org/10.1109/EDUCON.2011.5773154
Google Scholar
Orduña, P., Rodriguez-Gil, L., Angulo, I., Dziabenko, O., López-de-Ipiña, D., & García-Zubia, J. (2012). Exploring students collaboration in remote laboratory infrastructures. 2012 9th International Conference on Remote Engineering and Virtual Instrumentation (REV), 1–5. https://doi.org/10.1109/REV.2012.6293159
DOI: https://doi.org/10.1109/REV.2012.6293159
Google Scholar
Orduna, P., Zutin, D., Govaerts, S., Zorrozua, I. L., Bailey, P.H., Sancristobal, E., Salzmann, C., Rodriguez-Gil, L., DeLong, K., Gillet, D., Castro, M., Lopez-de-Ipina, D., & GarciaZubia, J. (2015). An Extensible Architecture for the Integration of Remote and Virtual Laboratories in Public Learning Tools. IEEE Revista Iberoamericana De Tecnologias Del Aprendizaje-Ieee Rita, 10(4), 223–233. https://doi.org/10.1109/rita.2015.2486338
DOI: https://doi.org/10.1109/RITA.2015.2486338
Google Scholar
Richter, G. M., Agostini, F., Barker, A., Costomiris, D., & Qi, A. M. (2016). Assessing on-farm productivity of Miscanthus crops by combining soil mapping, yield modelling and remote sensing. Biomass & Bioenergy, 85, 252–261. https://doi.org/10.1016/j.biombioe.2015.12.024
DOI: https://doi.org/10.1016/j.biombioe.2015.12.024
Google Scholar
Santana, I., Ferre, M., Izaguirre, E., Aracil, R., & Hernandez, L. (2013). Remote Laboratories for Education and Research Purposes in Automatic Control Systems. IEEE Transactions on Industrial Informatics, 9(1), 547–556. doi:10.1109/tii.2011.2182518
DOI: https://doi.org/10.1109/TII.2011.2182518
Google Scholar
Sivakumar, S. C., Robertson, W., Artimy, M., & Aslam, N. (2005). A web-based remote interactive laboratory for Internetworking education. IEEE Transactions on Education, 48(4), 586–598. doi:10.1109/te.2005.858393
DOI: https://doi.org/10.1109/TE.2005.858393
Google Scholar
Tirado, R., Herrera, R. S., Marquez, M. A., Mejias, A., & Andujar, J. M. (2015). Comparing Remote Laboratories from the Student Perspective. IFAC PapersOnLine, 48(29), 176–181. doi:10.1016/j.ifacol.2015.11.233
DOI: https://doi.org/10.1016/j.ifacol.2015.11.233
Google Scholar
Wang, D., Zhang, C., Huang, Y., & Li, W. (2010). Visualizing Air Pollutants through Image Processing. 2010 2nd International Conference on Information Engineering and Computer Science, 1–4. doi:10.1109/ICIECS.2010.5678349
DOI: https://doi.org/10.1109/ICIECS.2010.5678349
Google Scholar
Wong, C. J., MatJafri, M. Z., Abdullah, K., & Lim, H. S. (2009). Determination of aerosol concentration using an internet protocol camera. 2009 IEEE Aerospace conference, 1–7. doi:10.1109/AERO.2009.4839344
DOI: https://doi.org/10.1109/AERO.2009.4839344
Google Scholar
Authors
Tomasz CHMIELEWSKItomasz.chmielewski@pollub.pl
Electrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 38A, Lublin Poland
Authors
Katarzyna ZIELIŃSKAElectrical Engineering and Computer Science Faculty, Lublin University of Technology, Nadbystrzycka 38A, Lublin Poland
Statistics
Abstract views: 132PDF downloads: 6
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Dariusz Plinta, Karolina Kłaptocz, VIRTUAL REALITY IN PRODUCTION LAYOUT DESIGNING , Applied Computer Science: Vol. 17 No. 1 (2021)
- Sławomir KUKLA, Marek SMETANA, A SIMULATION EXPERIMENT AND MULTI-CRITERIA ASSESSMENT OF MANUFACTURING PROCESS FLOW VARIANTS TESTED ON A COMPUTER MODEL , Applied Computer Science: Vol. 13 No. 2 (2017)
- Anusha NALLAPAREDDY, DETECTION AND CLASSIFICATION OF VEGETATION AREAS FROM RED AND NEAR INFRARED BANDS OF LANDSAT-8 OPTICAL SATELLITE IMAGE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Jarosław ZUBRZYCKI, Antoni ŚWIĆ, Łukasz SOBASZEK, Juraj KOVAC, Ruzena KRALIKOVA, Robert JENCIK, Natalia SMIDOVA, Polyxeni ARAPI, Peter DULENCIN, Jozef HOMZA, CYBER-PHYSICAL SYSTEMS TECHNOLOGIES AS A KEY FACTOR IN THE PROCESS OF INDUSTRY 4.0 AND SMART MANUFACTURING DEVELOPMENT , Applied Computer Science: Vol. 17 No. 4 (2021)
- Sana KOUBAA, Jamel MARS, Fakhreddine DAMMAK, EFFICIENT NUMERICAL MODELLING OF FUNCTIONALLY GRADED SHELL MECHANICAL BEHAVIOR , Applied Computer Science: Vol. 15 No. 1 (2019)
- Ziadeddine MAKHLOUF, Abdallah MERAOUMIA , Laimeche LAKHDAR, Mohamed Yassine HAOUAM , ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING , Applied Computer Science: Vol. 20 No. 1 (2024)
- Mohanad ABDULHAMID, Deng PETER, REMOTE HEALTH MONITORING: FALL DETECTION , Applied Computer Science: Vol. 16 No. 1 (2020)
- Jakub ANCZARSKI, Adrian BOCHEN, MArcin GŁĄB, Mikolaj JACHOWICZ, Jacek CABAN, Radosław CECHOWICZ, A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Hae Chan Na, Yoon Sang Kim, A STUDY ON AN AR-BASED CIRCUIT PRACTICE , Applied Computer Science: Vol. 20 No. 1 (2024)
- Venkatesh BHANDAGE, Manohara PAI M. M., SEMANTIC SEGMENTATION OF ALGAL BLOOMS ON THE OCEAN SURFACE USING SENTINEL 3 CHL_NN BAND IMAGERY , Applied Computer Science: Vol. 20 No. 3 (2024)
You may also start an advanced similarity search for this article.