SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION
Article Sidebar
Open full text
Issue Vol. 13 No. 1 (2017)
-
AERODYNAMIC RESEARCH OF THE OVERPRESSURE DEVICE FOR INDIVIDUAL TRANSPORT
Paweł MAGRYTA5-19
-
MODELLING OF A LARGE ROTARY HEAT EXCHANGER
Tytus TULWIN20-28
-
INFORMATION TECHNOLOGY OF STOCK INDEXES FORECASTING ON THE BASE OF FUZZY NEURAL NETWORKS
Yuriy TRYUS, Nataliya ANTIPOVA, Kateryna ZHURAVEL, Grygoriy ZASPA29-40
-
CONSTRUCTION AND TECHNOLOGICAL ANALYSIS OF THE BROACH BLADE SHAPE USING THE FINITE ELEMENT METHOD
Stanisław BŁAWUCKI, Kazimierz ZALESKI41-50
-
CRANK-PISTON MODEL OF INTERNAL COMBUSTION ENGINE USING CAD/CAM/CAE IN THE MSC ADAMS
Michał BIAŁY, Marcin SZLACHETKA51-60
-
FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS
Evans BAIDOO61-74
-
USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY
Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA75-84
-
SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION
Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA85-96
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
The article presents the modeling and simulation of the crank-piston model of internal combustion engine. The object of the research was the engine of the vehicle from the B segment. The individual elements of the gasoline engine were digitizing using the process of reverse engineering. After converting the geometry, assembling was imported to MSC Adams software. The crank-piston system was specified by boundary conditions of piston forces applied on the pistons crowns. This force was obtain from the cylinder pressure recorded during the tests, that were carried out on a chassis dynamometer. The simulation studies allowed t determine the load distribution in a dynamic state for the selected kinematic pairs.
Keywords:
References
Ayodele, K. P., Inyang, I. A., & Kehinde, L. O. (2015). An iLab for Teaching Advanced Logic Concepts With Hardware Descriptive Languages. IEEE Transactions on Education, 58(4), 262–268. https://doi.org/10.1109/te.2015.2395996 DOI: https://doi.org/10.1109/TE.2015.2395996
Barrios, A., Panche, S., Duque, M., Grisales, V. H., Prieto, F., Villa, J. L., Chevrel, P., Canu, M. (2013). A multi-user remote academic laboratory system. Computers & Education, 62, 111-122. https://doi.org/10.1016/j.compedu.2012.10.011 DOI: https://doi.org/10.1016/j.compedu.2012.10.011
Beghi, A., Cervato, A., & Rampazzo, M. (2015). A Remote Refrigeration Laboratory for Control Engineering Education. IFAC PapersOnLine, 48(29), 25–30. https://doi.org/10.1016/j.ifacol.2015.11.208 DOI: https://doi.org/10.1016/j.ifacol.2015.11.208
Cazacu, D. (2014). A remote laboratory for frequency-response analysis of vibrating mechanical systems. 7th International Conference Interdisciplinarity in Engineering (Inter-Eng 2013), 12, 675–680. https://doi.org/10.1016/j.protcy.2013.12.548 DOI: https://doi.org/10.1016/j.protcy.2013.12.548
Chen, X. M., & Gao, H. Y. (2012). A Remote PLC Laboratory Design and Realization. International Conference on Advances in Computational Modeling and Simulation, 31, 1168–1172. https://doi.org/10.1016/j.proeng.2012.01.1158 DOI: https://doi.org/10.1016/j.proeng.2012.01.1158
Del Canto, C. J., Prada, M. A., Fuertes, J. J., Alonso, S., & Dominguez, M. (2015). Remote Laboratory for Cybersecurity of Industrial Control Systems. IFAC PapersOnLine, 48(29), 13–18. https://doi.org/10.1016/j.ifacol.2015.11.206 DOI: https://doi.org/10.1016/j.ifacol.2015.11.206
DeLong, K., Harward, V. J., Bailey, P., Hardison, J., Kohse, G., & Ostrocsky, Y. (2010). Three online neutron beam experiments based on the iLab Shared Architecture. IEEE EDUCON 2010 Conference, 7(1), 145–150. https://doi.org/10.1109/EDUCON.2010.5492587 DOI: https://doi.org/10.1109/EDUCON.2010.5492587
Estevez, C., & Wu, J. (2015). Recent advances in Green Internet of Things. 2015 7th IEEE Latin-American Conference on Communications (LATINCOM), 1–5. https://doi.org/10.1109/LATINCOM.2015.7430133 DOI: https://doi.org/10.1109/LATINCOM.2015.7430133
Exel, M., Gentil, S., Michau, F., & Rey, D. (2000). Simulation workshop and remote laboratory: Two web-based training approaches for control. Proceedings of the 2000 in American Control Conference, 5, 3468–3472. https://doi.org/10.1109/ACC.2000.879213 DOI: https://doi.org/10.1109/ACC.2000.879213
Gadzhanov, S. D., Nafalski, A., & Nedic, Z. (2014). LabVIEW based remote laboratory for advanced motion control. 2014 11th International Conference on Remote Engineering and Virtual Instrumentation (REV), 129–136. https://doi.org/10.1109/REV.2014.6784237 DOI: https://doi.org/10.1109/REV.2014.6784237
German-Sallo, Z., Grif, H. S., & Gligor, A. (2015). Technical evaluation of remote laboratories in an engineering educational network. 8th International Conference Interdisciplinarity in Engineering, Inter-Eng 2014, 19, 1136–1141. https://doi.org/10.1016/j.protcy.2015.02.162 DOI: https://doi.org/10.1016/j.protcy.2015.02.162
Guimaraes, E. G., Cardozo, E., Moraes, D. H., & Coelho, P. R. (2011). Design and Implementation Issues for Modern Remote Laboratories. IEEE Transactions on Learning Technologies, 4(2), 149–161. https://doi.org/10.1109/tlt.2010.22 DOI: https://doi.org/10.1109/TLT.2010.22
Hardison, J. L., DeLong, K., Bailey, P. H., & Harward, V. J. (2008). Deploying interactive remote labs using the iLab Shared Architecture. 2008 38th Annual Frontiers in Education Conference, S2A-1-S2A-6. https://doi.org/10.1109/FIE.2008.4720536 DOI: https://doi.org/10.1109/FIE.2008.4720536
Henke, K., Ostendorff, S., Wuttke, H., & Vogel, S. (2012). A grid concept for reliable, flexible and robust remote engineering laboratories. 9th International Conference on Remote Engineering and Virtual Instrumentation, 8, 42–49. DOI: https://doi.org/10.3991/ijoe.v8iS3.2263
Hercog, D., Gergic, B., Uran, S., & Jezernik, K. (2007). A DSP-based remote control laboratory. IEEE Transactions on Industrial Electronics, 54(6), 3057–3068. https://doi.org/10.1109/tie.2007.907009 DOI: https://doi.org/10.1109/TIE.2007.907009
Nafalski, A., (2012). Remote Laboratories Developments in Electrical Engineering. Lublin: Politechnika Lubelska.
Nedic, Z., Machotka, J., & Nafalski, A. (2003). Remote laboratories versus virtual and real laboratories. 33rd Annual Frontiers in Education, 2003. FIE 2003, 1, T3E-1-T3E-6. https://doi.org/10.1109/FIE.2003.1263343 DOI: https://doi.org/10.1109/FIE.2003.1263343
Orduna, P., Garcia-Zubia, J., Irurzun, J., Lopez-de-Ipina, D., & Rodriguez-Gil, L. (2011). Enabling mobile access to Remote Laboratories. 2011 IEEE Global Engineering Education Conference (EDUCON), 312–318. https://doi.org/10.1109/EDUCON.2011.5773154 DOI: https://doi.org/10.1109/EDUCON.2011.5773154
Orduña, P., Rodriguez-Gil, L., Angulo, I., Dziabenko, O., López-de-Ipiña, D., & García-Zubia, J. (2012). Exploring students collaboration in remote laboratory infrastructures. 2012 9th International Conference on Remote Engineering and Virtual Instrumentation (REV), 1–5. https://doi.org/10.1109/REV.2012.6293159 DOI: https://doi.org/10.1109/REV.2012.6293159
Orduna, P., Zutin, D., Govaerts, S., Zorrozua, I. L., Bailey, P.H., Sancristobal, E., Salzmann, C., Rodriguez-Gil, L., DeLong, K., Gillet, D., Castro, M., Lopez-de-Ipina, D., & GarciaZubia, J. (2015). An Extensible Architecture for the Integration of Remote and Virtual Laboratories in Public Learning Tools. IEEE Revista Iberoamericana De Tecnologias Del Aprendizaje-Ieee Rita, 10(4), 223–233. https://doi.org/10.1109/rita.2015.2486338 DOI: https://doi.org/10.1109/RITA.2015.2486338
Richter, G. M., Agostini, F., Barker, A., Costomiris, D., & Qi, A. M. (2016). Assessing on-farm productivity of Miscanthus crops by combining soil mapping, yield modelling and remote sensing. Biomass & Bioenergy, 85, 252–261. https://doi.org/10.1016/j.biombioe.2015.12.024 DOI: https://doi.org/10.1016/j.biombioe.2015.12.024
Santana, I., Ferre, M., Izaguirre, E., Aracil, R., & Hernandez, L. (2013). Remote Laboratories for Education and Research Purposes in Automatic Control Systems. IEEE Transactions on Industrial Informatics, 9(1), 547–556. doi:10.1109/tii.2011.2182518 DOI: https://doi.org/10.1109/TII.2011.2182518
Sivakumar, S. C., Robertson, W., Artimy, M., & Aslam, N. (2005). A web-based remote interactive laboratory for Internetworking education. IEEE Transactions on Education, 48(4), 586–598. doi:10.1109/te.2005.858393 DOI: https://doi.org/10.1109/TE.2005.858393
Tirado, R., Herrera, R. S., Marquez, M. A., Mejias, A., & Andujar, J. M. (2015). Comparing Remote Laboratories from the Student Perspective. IFAC PapersOnLine, 48(29), 176–181. doi:10.1016/j.ifacol.2015.11.233 DOI: https://doi.org/10.1016/j.ifacol.2015.11.233
Wang, D., Zhang, C., Huang, Y., & Li, W. (2010). Visualizing Air Pollutants through Image Processing. 2010 2nd International Conference on Information Engineering and Computer Science, 1–4. doi:10.1109/ICIECS.2010.5678349 DOI: https://doi.org/10.1109/ICIECS.2010.5678349
Wong, C. J., MatJafri, M. Z., Abdullah, K., & Lim, H. S. (2009). Determination of aerosol concentration using an internet protocol camera. 2009 IEEE Aerospace conference, 1–7. doi:10.1109/AERO.2009.4839344 DOI: https://doi.org/10.1109/AERO.2009.4839344
Article Details
Abstract views: 249
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
