MATCHING PURSUIT ALGORITHM IN ASSESSING THE STATE OF ROLLING BEARINGS
Kamil JONAK
k.jonak@pollub.plLublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)
Paweł KRUKOW
Medical University of Lublin, Głuska 2, 20-439 Lublin (Poland)
Abstract
In this paper the results of Matching Pursuit (MP) Octave algorithm applied to noise, vibration and harness (NVH) diagnosis of rolling bearings are presented. For this purpose two bearings in different condition state were examined. The object of the analysis was to calculate and present which energy error values of MP algorithm give the most accuracy results for different changes in bearing structures and also how energy values spread in time-frequency domain for chosen energy error value.
Keywords:
matching pursuit, bearing faults, energy errorReferences
Cempel, C. (1989). Wibroakustyka Stosowana. Warszawa: PWN.
Google Scholar
Chandra, H. N., & Sekhar, A. S. (2016). Fault detection in rotor bearing systems using time frequency techniques. Mechanical Systems and Signal Processing, 72–73, 105–133. https://doi.org/10.1016/j.ymssp.2015.11.013
DOI: https://doi.org/10.1016/j.ymssp.2015.11.013
Google Scholar
Chandran, S., Mishra, A., Shirhatti, V., & Ray, S. (2016). Comparison of Matching Pursuit Algorithm with Other Signal Processing Techniques for Computation of the Time-Frequency Power Spectrum of Brain Signals. The Journal of Neuroscience, 36(12), 3399–3408. https://doi.org/10.1523/JNEUROSCI.3633-15.2016
DOI: https://doi.org/10.1523/JNEUROSCI.3633-15.2016
Google Scholar
Cui, L., Wu, N., Ma, C., & Wang, H. (2016). Quantitative fault analysis of roller bearings based on a novel matching pursuit method with a new step-impulse dictionary. Mechanical Systems and Signal Processing, 68-69, 34–43. https://doi.org/10.1016/j.ymssp.2015.05.032
DOI: https://doi.org/10.1016/j.ymssp.2015.05.032
Google Scholar
Cui, L., Gong, X., Zhang, J., & Wang, H. (2016). Double-dictionary matching pursuit for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity. Journal of Sound and Vibration, 385, 372–388. https://doi.org/10.1016/j.jsv.2016.09.008
DOI: https://doi.org/10.1016/j.jsv.2016.09.008
Google Scholar
Cui, L., Wang, J., & Lee, S. (2014). Matching pursuit of and adaptive impulse dictionary for bearing fault diagnosis. Journal of Sound and Vibration, 333, 2840–2862. https://doi.org/10.1016/j.jsv.2013.12.029
DOI: https://doi.org/10.1016/j.jsv.2013.12.029
Google Scholar
Durka, P. J., Ircha, M., & Blinowska, K. J. (2001). Stochastic Time-Frequency Dictionaries for Matching Pursuit. IEEE Transactions of Signal Processing, 49, 507–510. https://doi.org/10.1109/78.905866
DOI: https://doi.org/10.1109/78.905866
Google Scholar
Gao, R. X., & Yan, R. (2011). Wavelets: Theory and Applications for Manufacturing. Springer. https://doi.org/10.1007/978-1-4419-1545-0_2
DOI: https://doi.org/10.1007/978-1-4419-1545-0_2
Google Scholar
He, G., Ding, K., & Lin, H. (2016). Fault feature of rolling element bearings using sparse representation. Journal of Sound and Vibration, 366, 514–527. https://doi.org/10.1016/j.jsv.2015.12.020
DOI: https://doi.org/10.1016/j.jsv.2015.12.020
Google Scholar
Kuś, R., Różański, P. T., & Durka, P. J. (2013). Multivariate matching pursuit in optimal Gabor dictionaries: theroy and software with interface for EEG/MEG via Svarog. Biomedical Engineering Online, 12, 1-28. https://doi.org/10.1186/1475-925X-12-94
DOI: https://doi.org/10.1186/1475-925X-12-94
Google Scholar
Liu, B., Ling, S. F., & Gribonoval, R. (2002). Bearing failure detection using matching pursuit. NDT&E International, 35, 255–262.
DOI: https://doi.org/10.1016/S0963-8695(01)00063-9
Google Scholar
Mallat, S., & Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries. IEEE Trans On Signal Processing, 41, 3397–3415. https://doi.org/10.1109/78.258082
DOI: https://doi.org/10.1109/78.258082
Google Scholar
Nguyen-Schafer, H. (2016). Computational Design of Rolling Bearings. Springer. https://doi.org/10.1007/978-3-319-27131-6
DOI: https://doi.org/10.1007/978-3-319-27131-6
Google Scholar
Tang, H. F., Chen, J., & Dong, G. M. (2012). Signal complexity analysis for fault diagnosis of rolling element bearing based on matching pursuit. Journal of Vibration and Control, 18, 671–683. https://doi.org/10.1177/1077546311405369
DOI: https://doi.org/10.1177/1077546311405369
Google Scholar
Yan, R., Gao, R. X., & Chen, X. (2014). Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 96, 1–15. https://doi.org/10.1016/j.sigpro.2013.04.015
DOI: https://doi.org/10.1016/j.sigpro.2013.04.015
Google Scholar
Authors
Kamil JONAKk.jonak@pollub.pl
Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Paweł KRUKOWMedical University of Lublin, Głuska 2, 20-439 Lublin Poland
Statistics
Abstract views: 101PDF downloads: 4
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Wulan Dewi, Wiranto Herry Utomo, PLANT CLASSIFICATION BASED ON LEAF EDGES AND LEAF MORPHOLOGICAL VEINS USING WAVELET CONVOLUTIONAL NEURAL NETWORK , Applied Computer Science: Vol. 17 No. 1 (2021)
You may also start an advanced similarity search for this article.