COMPUTER AIDED THERMAL PROCESSES IN TECHNICAL SPACES
Marian JANCZAREK
m.janczarek@pollub.plInstitute of Technological Systems of Information, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka St. 36, 20-618 Lublin (Poland)
Oleksij BULYANDRA
National University of Food Technologies, Volodymyrska St, 68, Kiev, (Ukraine)
Abstract
This paper describes research work on methods concerning heat transfers through walls of thermal technical chambers. The paper presents the mathematical and physical analysis of problems in the field of energy savings and material selection in thermal chambers in controlled gaseous environment. The purpose for the research is to point out areas subjected to the highest energy losses caused by building’s construction and geographical orientation of walls in the aspect of daily atmospheric temperature changes emerging on chamber exterior. Thermal problems were solved using computer aided support. The paper presents exemplary measurement results taken in Lublin region during various periods throughout a year.
Keywords:
heat transfer, thermal technical chambers, physical modeling, control processReferences
Bzowska, D. (2000). Heating load demand for a room under weather conditions.Archives of Thermodynamics, 21(1–2), 43–52.
Google Scholar
Bzowska, D. (2002). Prediction of natural ventilation rates induced by weather parameters. Archives of Civil Engineering, 48(4), 473–492.
Google Scholar
Bzowska, D. (2005). Natural ventilation induced by weather parameters in two-zone building.Archives of Civil Engineering, 51(1), 135–151.
Google Scholar
Calderaro, V., & Agnoli, S. (2007). Passive heating and cooling strategies in an approaches of retrofit in Rome. Energy and Buildings, 39(8), 875–885. https://doi.org/10.1016/j.enbuild.2006.10.008
DOI: https://doi.org/10.1016/j.enbuild.2006.10.008
Google Scholar
Chwieduk, D. (2006). Modelowanie i analiza pozyskiwania oraz konwersji termicznej energii promieniowania słonecznego w budynku. Prace Instytutu Podstawowych Problemów Techniki PAN, 11, 5–262.
Google Scholar
Dzieniszewski, W. (2005). Procesy cieplno-przepływowe w budynkach: podstawy modelowania matematycznego. Łódź: Komitet Inżynierii Lądoweji Wodnej PAN.
Google Scholar
Etheridge, D. (2002). Nondimensional methods for natural ventilation design. Building and Environment, 37(11), 1057–1072. https://doi.org/10.1016/S0360-1323(01)00091-9
DOI: https://doi.org/10.1016/S0360-1323(01)00091-9
Google Scholar
Fracastaro, G., Mutani, G., & Perino, M. (2002). Experimental and theoretical analysis of natural ventilation by window openings. Energy and Buildings, 34(8), 817–827. https://doi.org/10.1016/S0378-7788(02)00099-3
DOI: https://doi.org/10.1016/S0378-7788(02)00099-3
Google Scholar
Hunt, G. R., & Linden. P. F. (2001). Steady-state flows in an enclosure ventilated by buoyancy forces assisted by winds. Journal of Fluid Mechanics, 426, 355–386.
DOI: https://doi.org/10.1017/S0022112000002470
Google Scholar
Janczarek, M. M. (2013). Analiza matematyczno-fizyczna cieplnych komór technicznych. In M. Janczarek & J. Lipski (Eds.), Technologie informacyjne w technice i kształceniu (pp. 127–137). Lublin: Politechnika Lubelska.
Google Scholar
Janczarek, M. M., & Świć, A. (2012). Scientific and technological description of heat and mass transfer processes in chambers. Annals Of Faculty Of Engineering Hunedoara–International Journal Of Engineering, 10, 55–60.
Google Scholar
Janczarek, M., & Bulyandra, O. (2016). Computer modeling of energy saving effects. Applied Computer Science, 12(3), 47–60.
Google Scholar
Kisilewicz, T. (2003). Stateczność cieplna budynków pasywnych. Paper presentedat the IX Polska Konferencja Naukowo-Techniczna Fizyka Budowli w Teorii i Praktyce, Łódź, Poland.
Google Scholar
Lomas, K., Cook, M., & Fiala, D. (2007). Low energy architecture for severe US climate: Design and evaluation on a hybrid ventilation strategy. Energy and Buildings, 39(1), 32–44. https://doi.org/10.1016/j.enbuild.2006.03.032
DOI: https://doi.org/10.1016/j.enbuild.2006.03.032
Google Scholar
Suchorab, Z., Sobczuk, H., & Lagod, G. (2016). Estimation of Building Material Moisture Using Non-invasive TDR Sensors. In L. Pawłowski (Ed.), Environmental Engineering IV (pp.433–439). London: Taylor & Francis Group. https://doi.org/10.1201/b14894-64
DOI: https://doi.org/10.1063/1.4955231
Google Scholar
Voeltzel, A., Carrie, F. R., & Guarracino, G. (2001). Thermal and ventilation modelling of large highly-glazed spaces.Building and Environment, 33(2), 121–132. https://doi.org/10.1016/S0378-7788(00)00074-8
DOI: https://doi.org/10.1016/S0378-7788(00)00074-8
Google Scholar
Authors
Marian JANCZAREKm.janczarek@pollub.pl
Institute of Technological Systems of Information, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka St. 36, 20-618 Lublin Poland
Authors
Oleksij BULYANDRANational University of Food Technologies, Volodymyrska St, 68, Kiev, Ukraine
Statistics
Abstract views: 314PDF downloads: 7
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Marian JANCZAREK, COMPUTER MODELLING OF THERMAL TECHNICAL SPACESS IN ASPECT OF HEAT TRANSFER THROUGH THE WALLS , Applied Computer Science: Vol. 14 No. 3 (2018)
Similar Articles
- Isaac FLORES-HERNÁNDEZ, Edmundo BONILLA-HUERTA, Perfecto MALAQUIAS QUINTERO-FLORES, Oscar Atriano PONCE, José Crispín HERNÁNDEZ-HERNÁNDEZ, APPLYING INTELLIGENT TECHNIQUES FOR TALENT RECRUITMENT , Applied Computer Science: Vol. 15 No. 2 (2019)
You may also start an advanced similarity search for this article.