Abdulle, A. (2013). Numerical homogenization methods (No. EPFL-ARTICLE-184958).
Amirmaleki, M., Samei, J., Green, D. E., van Riemsdijk, I., & Stewart, L. (2016). 3D micromechanical modeling of dual phase steels using the representative volume element method. Mechanics of Materials, 101, 27–39. https://doi.org/10.1016/j.mechmat.2016.07.011
DOI: https://doi.org/10.1016/j.mechmat.2016.07.011
Bendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2
DOI: https://doi.org/10.1016/0045-7825(88)90086-2
Benveniste, Y. (1987). A new approach to the application of Mori-Tanaka's theory in composite materials. Mechanics of materials, 6(2), 147–157. https://doi.org/10.1016/0167-6636(87)90005-6
DOI: https://doi.org/10.1016/0167-6636(87)90005-6
Bouchart, V., Brieu, M., Kondo, D., & Abdelaziz, M. N. (2007). Macroscopic behavior of a reinforced elastomer: micromechanical modelling and validation. Mechanics & Industry, 8(3), 199–205. https://doi.org/10.1051/meca:2007039
DOI: https://doi.org/10.1051/meca:2007039
Doghri, I., & Tinel, L. (2006). Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Computer methods in applied mechanics and engineering, 195(13), 1387–1406. https://doi.org/10.1016/j.cma.2005.05.041
DOI: https://doi.org/10.1016/j.cma.2005.05.041
Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (241(1226), pp. 376–396). The Royal Society. https://doi.org/10.1098/rspa.1957.0133
DOI: https://doi.org/10.1098/rspa.1957.0133
e-Xstream engineering (2016). DIGIMAT – User’s manual. MSC Software Belgium SA, MontSaint-Guibert.
Frącz, W., & Janowski, G. (2016). Strength analysis of molded pieces produced from woodpolymer composites (WPC) including their complex structures. Composites Theory and Practice, 16(4), 260–265.
Lagoudas, D. C., Gavazzi, A. C., & Nigam, H. (1991). Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme. Computational Mechanics, 8(3), 193–203. https://doi.org/10.1007/BF00372689
DOI: https://doi.org/10.1007/BF00372689
Lielens, G. (1999). Micro-macro modeling of structured materials (PhD thesis). Universite Catholique de Louvain, Louvain-la-Neuve, Belgium.
Maxwell, J. C. (1867). On the dynamical theory of gases. Philosophical transactions of the Royal Society of London, 157, 49–88. https://doi.org/10.1098/rstl.1867.0004
DOI: https://doi.org/10.1098/rstl.1867.0004
Maxwell, J. C. (1873), A treatise on electricity and magnetism. 3rd Ed. Oxford: Clarendon Press.
Mercier, S., & Molinari, A. (2009). Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. International Journal of Plasticity, 25(6), 1024–1048. https://doi.org/10.1016/j.ijplas.2008.08.006
DOI: https://doi.org/10.1016/j.ijplas.2008.08.006
Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5), 571–574. https://doi.org/10.1016/0001-6160(73)90064-3
DOI: https://doi.org/10.1016/0001-6160(73)90064-3
Nemat-Nasser, S., & Hori, M. (1993). Micromechanics: overall properties of heterogeneous solids, Amsterdam: Elsevier Science.
Pierard, O., LLorca, J., Segurado, J., & Doghri, I. (2007). Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. International Journal of Plasticity, 23(6), 1041–1060. https://doi.org/10.1016/j.ijplas.2006.09.003
DOI: https://doi.org/10.1016/j.ijplas.2006.09.003
Rayleigh, L. (1892). LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(211), 481–502. https://doi.org/10.1080/14786449208620364
DOI: https://doi.org/10.1080/14786449208620364
Soni, G., Singh, R., Mitra, M., & Falzon, B. G. (2014). Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M 2 RVE). International Journal of Solids and Structures, 51(2), 449–461. https://doi.org/10.1016/j.ijsolstr.2013.10.018
DOI: https://doi.org/10.1016/j.ijsolstr.2013.10.018
Trzepieciński, T., Ryzińska, G., Biglar, M., & Gromada, M. (2017). Modelling of multilayer actuator layers by homogenisation technique using Digimat software. Ceramics International, 43(3), 3259-3266. https://doi.org/10.1016/j.ceramint.2016.11.157
DOI: https://doi.org/10.1016/j.ceramint.2016.11.157
Voigt, W. (1889). Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der physik, 274(12), 573–587. https://doi.org/10.1002/andp.18892741206
DOI: https://doi.org/10.1002/andp.18892741206