PRIORITY ALGORITHMS FOR THE PROBLEM OF FINANCIAL OPTIMISATION OF A MULTI STAGE PROJECT
Marcin KLIMEK
m.klimek@dydaktyka.pswbp.plState School of Higher Education, Department of Computer Science, Sidorska 95-97, Biala Podlaska (Poland)
Abstract
The article presents the problem of the financial optimisation of a multi-stage project from the contractor's perspective, where customer's payments are analysed as a cash inflow (contractor's revenues) after completing contractual stages and contractor's expenses incurred for the activities executed. In order to solve the problem, priority algorithms are proposed: single-pass and multi-pass ones, using different priority rules and techniques for generating solutions dedicated to the investigated optimisation model. The article presents a comparison of the effectiveness of individual algorithms in the case of adequately prepared test problems.
Keywords:
resource-constrained multi-stage project scheduling, discounted cash flows, milestones, priority algorithmsReferences
Błażewicz, J., Lenstra, J., & Kan, A. (1983). Scheduling subject to resource constraints classification and complexity. Discrete Applied Mathematics, 5, 11–24.
DOI: https://doi.org/10.1016/0166-218X(83)90012-4
Google Scholar
Hartmann, S., & Briskorn, D. (2012). A Survey of Variants and Extensions of the ResourceConstrained Project Scheduling Problem. European Journal of Operational Research, 207(1), 1–14.
DOI: https://doi.org/10.1016/j.ejor.2009.11.005
Google Scholar
Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 127, 394–407.
DOI: https://doi.org/10.1016/S0377-2217(99)00485-3
Google Scholar
He, Z., Wang, N., Jia, T., & Xu, Y. (2009). Simulated annealing and tabu search for multimode project payment scheduling. European Journal of Operational Research, 198(3), 688–696.
DOI: https://doi.org/10.1016/j.ejor.2008.10.005
Google Scholar
Józefowska, J., & Węglarz, J. (Eds.). (2006). Perspectives in modern project scheduling. Springer.
DOI: https://doi.org/10.1007/978-0-387-33768-5
Google Scholar
Klimek, M. (2010). Predyktywno-reaktywne harmonogramowanie produkcji z ograniczoną dostępnością zasobów (doctoral dissertation). AGH, Kraków.
Google Scholar
Klimek, M., & Łebkowski, P. (2015a). Harmonogramowanie projektu rozliczanego etapowo. Kraków: AGH.
Google Scholar
Klimek, M., & Łebkowski, P. (2015b). Heuristics for project scheduling with discounted cash flows optimisation. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(3),613–622.
DOI: https://doi.org/10.1515/bpasts-2015-0072
Google Scholar
Kolisch, R. (1996a). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research, 90, 320–333.
DOI: https://doi.org/10.1016/0377-2217(95)00357-6
Google Scholar
Kolisch, R. (1996b). Efficient priority rules for the resource-constrained project scheduling problem. Journal of Operations Management, 14, 179–192.
DOI: https://doi.org/10.1016/0272-6963(95)00032-1
Google Scholar
Kolisch, R., & Hartmann, S. (2006). Experimental Investigation of Heuristics for ResourceConstrained Project Scheduling: An Update. European Journal of Operational Research, 74(1), 23–37.
DOI: https://doi.org/10.1016/j.ejor.2005.01.065
Google Scholar
Kolisch, R., & Sprecher, A. (1997). PSPLIB – a project scheduling library. European Journal of Operational Research, 96, 205–216.
DOI: https://doi.org/10.1016/S0377-2217(96)00170-1
Google Scholar
Mika, M., Waligóra, G., & Węglarz, J. (2005). Simulated annealing and tabu search for multimode resource-constrained project scheduling with positive discounted cash flows and different payment models. European Journal of Operational Research, 164(3), 639–668.
DOI: https://doi.org/10.1016/j.ejor.2003.10.053
Google Scholar
Ulusoy, G., Sivrikaya-Serifoglu, F., & Sahin, S. (2001). Four Payment Models for the Multi-Mode Resource Constrained Project Scheduling Problem with Discounted Cash Flows. Annals of Operations Research, 102, 237–261.
DOI: https://doi.org/10.1023/A:1010914417817
Google Scholar
Valls, V, Ballestin, F, & Quintanilla, S. (2005). Justification and RCPSP: a technique that pays. European Journal of Operational Research, 165(2), 375–386.
DOI: https://doi.org/10.1016/j.ejor.2004.04.008
Google Scholar
Vanhoucke, M. (2006). A scatter search procedure for maximizing the net present value of a resourceconstrained project with fixed activity cash flows. Working Paper 2006/417, Gent, 1–23.
Google Scholar
Authors
Marcin KLIMEKm.klimek@dydaktyka.pswbp.pl
State School of Higher Education, Department of Computer Science, Sidorska 95-97, Biala Podlaska Poland
Statistics
Abstract views: 187PDF downloads: 5
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Marcin KLIMEK, TECHNIQUES OF GENERATING SCHEDULES FOR THE PROBLEM OF FINANCIAL OPTIMIZATION OF MULTI-STAGE PROJECT , Applied Computer Science: Vol. 15 No. 1 (2019)
Similar Articles
- Marcin KLIMEK, TECHNIQUES OF GENERATING SCHEDULES FOR THE PROBLEM OF FINANCIAL OPTIMIZATION OF MULTI-STAGE PROJECT , Applied Computer Science: Vol. 15 No. 1 (2019)
- Workineh TESEMA, INEFFICIENCY OF DATA MINING ALGORITHMS AND ITS ARCHITECTURE: WITH EMPHASIS TO THE SHORTCOMING OF DATA MINING ALGORITHMS ON THE OUTPUT OF THE RESEARCHES , Applied Computer Science: Vol. 15 No. 3 (2019)
- Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO, CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Mariano LARIOS, Perfecto M. QUINTERO-FLORES , Mario ANZURES-GARCÍA , Miguel CAMACHO-HERNANDEZ , APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES , Applied Computer Science: Vol. 19 No. 2 (2023)
- Anitha Rani PALAKAYALA, Kuppusamy P, A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY , Applied Computer Science: Vol. 20 No. 3 (2024)
- Tomasz NOWICKI, Adam GREGOSIEWICZ, Zbigniew ŁAGODOWSKI, PRODUCTIVITY OF A LOW-BUDGET COMPUTER CLUSTER APPLIED TO OVERCOME THE N-BODY PROBLEM , Applied Computer Science: Vol. 17 No. 4 (2021)
- Tomasz Sikora, Wanda Gryglewicz-Kacerka, APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM , Applied Computer Science: Vol. 19 No. 2 (2023)
- Martin KRAJČOVIČ, Patrik GRZNÁR, UTILISATION OF EVOLUTION ALGORITHM IN PRODUCTION LAYOUT DESIGN , Applied Computer Science: Vol. 13 No. 3 (2017)
- Sheikh Amir FAYAZ, Majid ZAMAN, Muheet Ahmed BUTT, Sameer KAUL, HOW MACHINE LEARNING ALGORITHMS ARE USED IN METEOROLOGICAL DATA CLASSIFICATION: A COMPARATIVE APPROACH BETWEEN DT, LMT, M5-MT, GRADIENT BOOSTING AND GWLM-NARX MODELS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Marcin MACIEJEWSKI, Barbara MACIEJEWSKA, Robert KARPIŃSKI, Przemysław KRAKOWSKI, ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS , Applied Computer Science: Vol. 16 No. 4 (2020)
You may also start an advanced similarity search for this article.