NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST
Article Sidebar
Open full text
Issue Vol. 13 No. 4 (2017)
-
APPLICATION OF A COMPUTER TOOL MONITORING SYSTEM IN CNC MACHINING CENTRES
Damian KOLNY, Dorota WIĘCEK, Paweł ZIOBRO, Martin KRAJČOVIČ7-19
-
PRIORITY ALGORITHMS FOR THE PROBLEM OF FINANCIAL OPTIMISATION OF A MULTI STAGE PROJECT
Marcin KLIMEK20-34
-
PRODUCTION PLANNING IN CONDITIONS OF MASS CUSTOMIZATION BASED ON THEORY OF CONSTRAINTS
Janusz MLECZKO, Paweł BOBIŃSKI35-44
-
LIMITING VALUE OF COCKROFT-LATHAM INTEGRAL FOR COMMERCIAL PLASTICINE
Łukasz WÓJCIK, Zbigniew PATER45-55
-
NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST
Bartosz KAWECKI, Jerzy PODGÓRSKI56-64
-
THE POSSIBILITY OF USING WOOD FIBER MATS IN PRODUCTS MANUFACTURING MADE OF POLYMER COMPOSITES BASED ON NUMERICAL SIMULATIONS
Wiesław FRĄCZ, Grzegorz JANOWSKI, Grażyna RYZIŃSKA65-75
-
APPLICATION OF NEURAL NETWORKS IN PREDICTION OF TENSILE STRENGTH OF ABSORBABLE SUTURES
Robert KARPIŃSKI, Jakub GAJEWSKI, Jakub SZABELSKI, Dalibor BARTA76-86
-
MODELLING AND SIMULATION OF PRODUCTION FLOW IN JOB-SHOP PRODUCTION SYSTEM WITH ENTERPRISE DYNAMICS SOFTWARE
Arkadiusz GOLA, Łukasz WIECHETEK87-97
Archives
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
-
Vol. 15 No. 4
2019-12-30 8
-
Vol. 15 No. 3
2019-09-30 8
-
Vol. 15 No. 2
2019-06-30 8
-
Vol. 15 No. 1
2019-03-30 8
-
Vol. 14 No. 4
2018-12-30 8
-
Vol. 14 No. 3
2018-09-30 8
-
Vol. 14 No. 2
2018-06-30 8
-
Vol. 14 No. 1
2018-03-30 7
-
Vol. 13 No. 4
2017-12-30 8
-
Vol. 13 No. 3
2017-09-30 8
-
Vol. 13 No. 2
2017-06-30 8
-
Vol. 13 No. 1
2017-03-30 8
Main Article Content
DOI
Authors
Abstract
The paper presents a brief description of the Abaqus Simulia plane stress quadrilateral elements (CPS4R, CPS4I, CPS4, CPS8R, CPS8). Comparison of the results quality obtained using each of them was done. There was considered two dimensional big displacements compression test for a highly orthotropic material. Simulations were performed for the compression in two perpendicular directions.
Keywords:
References
Abaqus/CAE V6.14 User's Manual.
Armstrong, C. G. (1994). Modelling requirements for finite-element analysis. Computer-Aided Design, 26, 573–578. https://doi.org/10.1016/0010-4485(94)90088-4 DOI: https://doi.org/10.1016/0010-4485(94)90088-4
Barlow, J. (1989). More on optimal stress points – reduced integration, element distortions and error estimation. International Journal of Numerical Methods in Engineering, 28, 1487–1504. https://doi.org/10.1002/nme.1620280703 DOI: https://doi.org/10.1002/nme.1620280703
Bathe, K. J. (2014). Finite Element Procedures. Second Edition, 341–389.
Cook, R. D., Malkus, D. S., Plesha, M. E., & Witt R. J. (2002). Concepts and Applications of FEA, 4th ed. (98–102). John Wiley&Sons, Inc.
Jones, R. M. (1999). Mechanics of Composite Materials. Second Edition, 55–73. Philadelphia: Taylor & Francis Group.
Lekhnitskii, S. G. (1981). Theory of Elasticity of an Anisotropic Elastic Body. Mir Publishers.
Lee, N. S., & Bathe, K. J. (1993). Effects of element distortions on the performance of isoparametric elements. International Journal of Numerical Methods in Engineering, 36, 3553–3576. https://doi.org/10.1002/nme.1620362009 DOI: https://doi.org/10.1002/nme.1620362009
Liu, G. R. & Quek, S. S. (2014). The Finite Element Method. A Practical Course. Second Edition, 161–211. Elsevier. DOI: https://doi.org/10.1016/B978-0-08-098356-1.00007-2
Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1, 3–20. https://doi.org/10.1016/0168-874X(85)90003-4 DOI: https://doi.org/10.1016/0168-874X(85)90003-4
Turcke, D. J., & McNeice, G. M. (1974). Guidelines for selecting finite element grids based on an optimization study. Computers & Structures, 4, 499–519. https://doi.org/10.1016/0045-7949(74)90003-0 DOI: https://doi.org/10.1016/0045-7949(74)90003-0
Zienkiewicz, O. C., & Taylor, R. L. (2000). The Finite Element Method. Fifth Edition. Volume 1: The Basis, 164–198. Oxford, UK: Butterworth-Heinemann.
Article Details
Abstract views: 385
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
