A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE

Jakub ANCZARSKI


Lublin University of Technology, Faculty of Mechanical Engineering, (Poland)

Adrian BOCHEN


Lublin University of Technology, Faculty of Mechanical Engineering, Student (Poland)

MArcin GŁĄB


Lublin University of Technology, Faculty of Mechanical Engineering, Student (Poland)

Mikolaj JACHOWICZ


Lublin University of Technology, Faculty of Mechanical Engineering, Student (Poland)

Jacek CABAN

j.caban@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation, Nadbystrzycka 36, 20-618 Lublin, (Poland)

Radosław CECHOWICZ


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation, Nadbystrzycka 36, 20-618 Lublin, (Poland)

Abstract

The latest market research (Fanuc Polska 2019) shows that the robotization of the Polish industry is accelerating. More and more companies are investing in robotic production lines, which enable greater efficiency of implemented processes and reduce labour costs. The article presents the possibilities of using virtual reality (VR) for behavioural analysis in open robotic systems with a shared workspace. The aim of the article is to develop a method of verification of programmed movements of an industrial robot in terms of safety and efficiency in systems with a shared workspace. The method of the robot program verification on the digital model of the working cell made in VR will be checked. The obtained research results indicate a great potential of this method in industrial applications as well as for educational purposes.


Keywords:

computer applications, robot safety, virtual reality

Bistak, M., Medvecky, S., Gajdosova, E., Dzimko, M., Gramblicka, S., Kohar, R., Stopka, M., Steininger, J., Hrcek, S., Tropp, M., & Brumercik, F. (2017). Applications of modern technologies in the production of aircraft propeller prototype. Communications - Scientific Letters of the University of Zilina, 19(2), 54–59. https://doi.org/10.26552/com.C.2017.2A.54-59
DOI: https://doi.org/10.26552/com.C.2017.2A.54-59   Google Scholar

Blatnický, M., Dižo, J., Barta, D., & Droździel, P. (2020). FEM analysis of main parts of a manipulator for mountig a compressor to a car equipped with a pneumatic suspension system. Diagnostyka, 21(2), 87–94. https://doi.org/10.29354/diag/122549
DOI: https://doi.org/10.29354/diag/122549   Google Scholar

Blatnický, M., Dižo, J., Gerlici, J., Sága, M., Lack, T., & Kuba, E. (2020). Design of a robotic manipulator for handling products of automotive industry. International Journal of Advanced Robotic Systems, 17(1), 1–11. https://doi.org/10.1177/1729881420906290
DOI: https://doi.org/10.1177/1729881420906290   Google Scholar

Blatnický, M., Dižo, J., & Timošcuk, M. (2016). Design of a three-finger robot manipulator. Manufacturing Technology, 16(3), 485–489.
DOI: https://doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/3/485   Google Scholar

Bogucki, M., Stączek, P., & Płaska, S. (2003). Methods of improving quality product and process using experimental techniques. Second International CAMT Conference (Centre for Advanced Manufacturing Technologies), Modern Trends in Manufacturing (pp. 15–20).
  Google Scholar

Burdea, G. C. (1999). Invited review: the synergy between virtual reality and robotics. IEEE Transactions on Robotics and Automation, 15(3), 400–410. https://doi.org/10.1109/70.768174.
DOI: https://doi.org/10.1109/70.768174   Google Scholar

Cechowicz, R. (2003). An approach to flexible scheduling in job shop manufacturing system. Second International CAMT Conference (Centre for Advanced Manufacturing Technologies), Modern Trends in Manufacturing (pp. 27–35).
  Google Scholar

Chen, C., Su, B., Guo, M., Zhong, Y., Yang, Y., & Kuo, H. L. (2018). Applying virtual reality to control of logical control mechanism system. IEEE International Conference on Applied System Invention (ICASI) (pp. 520–523). IEEE. https://doi.org/10.1109/ICASI.2018.8394302
DOI: https://doi.org/10.1109/ICASI.2018.8394302   Google Scholar

Collaborative Robot Safety Made Simple. (2020). https://sickusablog.com/collaborative-robot-safety-madesimple Covaciu, F., Pisla, A., Carbone, G., Puskas, F., Vaida, C., & Pisla, D. (2018). VR interface for cooperative robots applied in dynamic environments. IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) (pp. 1–6). IEEE. https://doi.org/10.1109/AQTR.2018.8402734
DOI: https://doi.org/10.1109/AQTR.2018.8402734   Google Scholar

Ehmanna, D., & Wittenberg, C. (2018). The idea of Virtual Teach-In in the field of industrial robotics. 2018 IEEE 14th International Conference on Control and Automation (ICCA) (pp. 680–685). IEEE. http://dx.doi.org/10.1109/ICCA.2018.8444250
DOI: https://doi.org/10.1109/ICCA.2018.8444250   Google Scholar

Fedorko, G. (2021). Application possibilities of virtual reality in failure analysis of conveyor belts. Engineering Failure Analysis, 128, 105615. https://doi.org/10.1016/j.engfailanal.2021.105615
DOI: https://doi.org/10.1016/j.engfailanal.2021.105615   Google Scholar

FreeMove — Veo Robotics. (2020). https://www.veobot.com/freemove
  Google Scholar

Gola, A. (2014). Economic aspects of manufacturing systems design. Actual Problems of Economics, 156(6), 205–212.
  Google Scholar

Gola, A., Plinta, D., & Grznar, P. (2021). Modelling and simulation of reconfigurable manufacturing system for machining of casing-class parts. Engineering for Rural Development, 20, 1563–1568.
DOI: https://doi.org/10.22616/ERDev.2021.20.TF333   Google Scholar

Heydaryan, S., Suaza Bedolla, J., & Belingardi, G. (2018). Safety Design and Development of a Human-Robot Collaboration Assembly Process in the Automotive Industry. Applied Sciences, 8(3), 344. https://doi.org/10.3390/app8030344
DOI: https://doi.org/10.3390/app8030344   Google Scholar

Ji, W., Yin, S., & Wang, L. (2018). A virtual training based programming-free automatic assembly approach for future industry. IEEE Access, 6, 43865–43873. https://doi.org/10.1109/ACCESS.2018.2863697
DOI: https://doi.org/10.1109/ACCESS.2018.2863697   Google Scholar

Jenis, J., Hrcek, S., Brumercik, F., & Bastovansky, R. (2021). Design of automatic assembly station for industrial vehicles parts. LOGI – Scientific Journal on Transport and Logistics, 12, 1, 204–213. https://doi.org/10.2478/logi-2021-0019
DOI: https://doi.org/10.2478/logi-2021-0019   Google Scholar

Klačková, I., Kuric, I., Zajacko, I., & Tucki, K. (2020). Energy and economical aspects of implementation of virtual reality in robotized technology systems. ICETA 2020 – 18th IEEE International Conference on Emerging eLearning Technologies and Applications, Proceedings (pp. 318–322). IEEE. https://doi.org/10.1109/ICETA51985.2020.9379176
DOI: https://doi.org/10.1109/ICETA51985.2020.9379176   Google Scholar

Klarak, J., Kuric, I., Cisar, M., Stanček, J., Hajducik, A., & Tucki, K. (2021). Processing 3D data from laser sensor into visual content using pattern recognition. 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 543–549). IEEE. https://doi.org/10.1109/ICIEA52957.2021.9436712
DOI: https://doi.org/10.1109/ICIEA52957.2021.9436712   Google Scholar

Kose, A., Tepljakov, A., Astapov, S., Draheim, D., Petlenkov, E. K., & Vassiljeva, K. (2018). Towards a synesthesia laboratory: real-time localization and visualization of a sound source for Virtual Reality applications. Journal of Communications Software and Systems, 14(1), 112–120. http://dx.doi.org/10.24138/jcomss.v14i1.410
DOI: https://doi.org/10.24138/jcomss.v14i1.410   Google Scholar

Kot, T., Novák, P., & Bajak, J. (2018). Using HoloLens to Create a Virtual Operator Station for Mobile Robots. 19th International Carpathian Control Conference (ICCC) (pp. 422–427). IEEE. https://doi.org/10.1109/CarpathianCC.2018.8399667
DOI: https://doi.org/10.1109/CarpathianCC.2018.8399667   Google Scholar

Kuts, V, Otto, T., Tähemaa, T., & Bondarenko, Y. (2019). Digital Twin based synchronised control and simulation of the industrial robotic cell using Virtual Reality. Journal of Machine Engineering, 19(1), 128–144. https://doi.org/10.5604/01.3001.0013.0464
DOI: https://doi.org/10.5604/01.3001.0013.0464   Google Scholar

Oyekan, J. O., Hutabarat, W., Tiwari, A., Grech, R., Aung, M. H., Mariani, M. P., López-Dávalos, L., Ricaud, T., Singh, S., & Dupuis, C. (2019). The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robotics and Computer-Integrated Manufacturing, 55, 41–54. https://doi.org/10.1016/j.rcim.2018.07.006
DOI: https://doi.org/10.1016/j.rcim.2018.07.006   Google Scholar

Shen, W. (2020). Research on virtual simulation design of ABB robot welding operation based on Robotstudio. IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 894–897). IEEE. http://dx.doi.org/10.1109/ICAICA50127.2020.9182551
DOI: https://doi.org/10.1109/ICAICA50127.2020.9182551   Google Scholar

Sobaszek, Ł., Gola, A., & Świć, A. (2022). The algorithms for robust scheduling of production jobs under machine failure and variable technological operation times. Lecture Notes in Mechanical Engineering, (pp. 56–67). Springer. https://doi.org/10.1007/978-3-030-78170-5_6
DOI: https://doi.org/10.1007/978-3-030-78170-5_6   Google Scholar

Stączek, P., Bogucki, M., & Płaska, S. (2003). Fuzzy logic in supervising of complex technological processes. Second International CAMT Conference (Centre for Advanced Manufacturing Technologies), Modern Trends in Manufacturing (pp. 351–360).
  Google Scholar

Świć, A., & Gola, A. (2013). Economic analysis of casing parts production in a flexible manufacturing system. Actual Problems of Economics, 141(3), 526–533.
  Google Scholar

Szabo, S., Shackleford, W., Norcross, R., & Marvel, J. (2012). A testbed for evaluation of speed and separation monitoring in a human robot collaborative environment. NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, https://doi.org/10.6028/NIST.IR.7851
DOI: https://doi.org/10.6028/NIST.IR.7851   Google Scholar

Togias, T., Gkournelos, C., Angelakis, P., Michalos, G., & Makris, S. (2021). Virtual reality environment for industrial robot control and path design. Procedia CIRP, 100, 133–138. https://doi.org/10.1016/j.procir.2021.05.021
DOI: https://doi.org/10.1016/j.procir.2021.05.021   Google Scholar

Vosniakos, G. C., Ouillon, L., & Matsas, E. (2019). Exploration of two safety strategies in human-robot collaborative manufacturing using Virtual Reality. Procedia Manufacturing, 38, 524–531. https://doi.org/10.1016/j.promfg.2020.01.066
DOI: https://doi.org/10.1016/j.promfg.2020.01.066   Google Scholar

Wang, Q., Cheng, Y., Jiao, W., Johnson, M. T., & Zhang, Y. M. (2019). Virtual reality human-robot collaborative welding: a case study of weaving gas tungsten arc welding. Journal of Manufacturing Processes, 48, 210–217. https://doi.org/10.1016/j.jmapro.2019.10.016
DOI: https://doi.org/10.1016/j.jmapro.2019.10.016   Google Scholar

Wpływ robotyzacji na konkurencyjność polskich przedsiębiorstw III edycja. (2019). Instytut Prognoz i Analiz Gospodarczych. Fanuc Polska Sp z o.o.
  Google Scholar

Download


Published
2022-03-30

Cited by

ANCZARSKI, J., BOCHEN, A., GŁĄB, M., JACHOWICZ, M. ., CABAN, J., & CECHOWICZ, R. (2022). A METHOD OF VERIFYING THE ROBOT’S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE. Applied Computer Science, 18(1), 37–44. https://doi.org/10.23743/acs-2022-03

Authors

Jakub ANCZARSKI 

Lublin University of Technology, Faculty of Mechanical Engineering, Poland

Authors

Adrian BOCHEN 

Lublin University of Technology, Faculty of Mechanical Engineering, Student Poland

Authors

MArcin GŁĄB 

Lublin University of Technology, Faculty of Mechanical Engineering, Student Poland

Authors

Mikolaj JACHOWICZ 

Lublin University of Technology, Faculty of Mechanical Engineering, Student Poland

Authors

Jacek CABAN 
j.caban@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation, Nadbystrzycka 36, 20-618 Lublin, Poland

Authors

Radosław CECHOWICZ 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Automation, Nadbystrzycka 36, 20-618 Lublin, Poland

Statistics

Abstract views: 86
PDF downloads: 60


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.