Ashraf, M., Zaman, M., & Ahmed, M. (2018a). Using ensemble stackingc method and base classifiers to ameliorate prediction accuracy of pedagogical data. Procedia Computer Science, 132(Iccids), 1021–1040. https://doi.org/10.1016/j.procs.2018.05.018
DOI: https://doi.org/10.1016/j.procs.2018.05.018
Ashraf, M., Zaman, M., & Ahmed, M. (2018b). Performance analysis and different subject combinations: an empirical and analytical discourse of educational data mining. Proceedings of the 8th International Conference Confluence 2018 on Cloud Computing, Data Science and Engineering, Confluence 2018 (pp. 287–292). IEEE. https://doi.org/10.1109/CONFLUENCE.2018.8442633
DOI: https://doi.org/10.1109/CONFLUENCE.2018.8442633
Ashraf, M., Zaman, M., & Ahmed, M. (2019). To ameliorate classification accuracy using ensemble vote approach and base classifiers. In Advances in Intelligent Systems and Computing (vol 813). Springer Singapore. https://doi.org/10.1007/978-981-13-1498-8_29
DOI: https://doi.org/10.1007/978-981-13-1498-8_29
Ashraf, M., Zaman, M., & Ahmed, M. (2020). An intelligent prediction system for educational data mining based on ensemble and filtering approaches. Procedia Computer Science, 167(2019), 1471–1483. https://doi.org/10.1016/j.procs.2020.03.358
DOI: https://doi.org/10.1016/j.procs.2020.03.358
Bashir, S., Khan, Z. S., Hassan Khan, F., Anjum, A., & Bashir, K. (2019). Improving Heart Disease Prediction Using Feature Selection Approaches. Proceedings of 2019 16th International Bhurban Conference on Applied Sciences and Technology, (pp. 619–623). IEEE. https://doi.org/10.1109/IBCAST.2019.8667106
DOI: https://doi.org/10.1109/IBCAST.2019.8667106
Benhar, H., Idri, A., & Fernández-Alemán, J. L. (2019). A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery. Journal of Medical Systems, 43(1), 17. https://doi.org/10.1007/s10916-018-1134-z
DOI: https://doi.org/10.1007/s10916-018-1134-z
Cardiovascular (Heart) Diseases: Types and Treatments. (n.d.). Retrieved January 8, 2022 from https://www.webmd.com/heart-disease/guide/diseases-cardiovascular
Chandra Shekar, K., Chandra, P., & Venugopala Rao, K. (2019). An Ensemble Classifier Characterized by Genetic Algorithm with Decision Tree for the Prophecy of Heart Disease. In Lecture Notes in Networks and Systems (Vol. 74). Springer Singapore. https://doi.org/10.1007/978-981-13-7082-3_2
DOI: https://doi.org/10.1007/978-981-13-7082-3_2
Coronary artery disease: Causes, symptoms, and treatment. (n.d.). Retrieved December 22, 2021 from https://www.medicalnewstoday.com/articles/184130
Coronary heart disease – NHS. (n.d.). Retrieved December 22, 2021 from https://www.nhs.uk/conditions/coronaryheart-disease/
Coronary Heart Disease | NHLBI, NIH. (n.d.). Retrieved December 22, 2021 from https://www.nhlbi.nih.gov/healthtopics/coronary-heart-disease
Data Jabberwocky: Decision Tree Mathematical Formulation. (n.d.). Retrieved December 26, 2021 from http://fiascodata.blogspot.com/2018/08/decision-tree-mathematical-formulation.html
Decision Tree – GeeksforGeeks. (n.d.). Retrieved December 26, 2021 from https://www.geeksforgeeks.org/decisiontree/
Decision Trees in Machine Learning | by Prashant Gupta | Towards Data Science. (n.d.). Retrieved December 26, 2021 from https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
Dun, B., Wang, E., & Majumder, S. (2016). Heart Disease Diagnosis on Medical Data Using Ensemble Learning. Computer Science, 1(1), 1–5.
El-Shafeiy, E. A., El-Desouky, A. I., & Elghamrawy, S. M. (2018). Prediction of Liver Diseases Based on Machine Learning Technique for Big Data. Advances in Intelligent Systems and Computing, 723, 362–374. https://doi.org/10.1007/978-3-319-74690-6_36
DOI: https://doi.org/10.1007/978-3-319-74690-6_36
Entropy: How Decision Trees Make Decisions | by Sam T | Towards Data Science. (n.d.). Retrieved December 26, 2021 from https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8
Entropy and Information Gain in Decision Trees | by Jeremiah Lutes | Towards Data Science. (n.d.). Retrieved December 26, 2021 from https://towardsdatascience.com/entropy-and-information-gain-in-decisiontrees-c7db67a3a293
Framingham Heart Study. (n.d.). Retrieved September 9, 2021 from https://framinghamheartstudy.org/
Gokulnath, C. B., & Shantharajah, S. P. (2019). An optimized feature selection based on genetic approach and support vector machine for heart disease. Cluster Computing, 22(s6), 14777–14787. https://doi.org/10.1007/s10586-018-2416-4
DOI: https://doi.org/10.1007/s10586-018-2416-4
Heart disease – Symptoms and causes - Mayo Clinic. (n.d.). Retrieved January 8, 2022 from
https://www.mayoclinic.org/diseases-conditions/heart-disease/symptoms-causes/syc-20353118
K-Nearest Neighbor(KNN) Algorithm for Machine Learning - Javatpoint. (n.d.). Retrieved December 26, 2021 from https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine Learning and Data Mining Methods in Diabetes Research. Computational and Structural Biotechnology Journal, 15, 104–116. https://doi.org/10.1016/J.CSBJ.2016.12.005
DOI: https://doi.org/10.1016/j.csbj.2016.12.005
Latha, C. B. C., & Jeeva, S. C. (2019). Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Informatics in Medicine Unlocked, 16, 100203. https://doi.org/10.1016/j.imu.2019.100203
DOI: https://doi.org/10.1016/j.imu.2019.100203
Less than $1: How WHO thinks that can save 7 million lives. (n.d.). Retrieved January 9, 2022 from https://www.downtoearth.org.in/news/health/less-than-1-how-who-thinks-that-can-save-7-million-lives80679
Logistic Regression - an overview | ScienceDirect Topics. (n.d.). Retrieved December 26, 2021 from https://www.sciencedirect.com/topics/computer-science/logistic-regression
Mir, N. M., Khan, S., Butt, M. A., & Zaman, M. (2016). An experimental evaluation of Bayesian classifiers applied to intrusion detection. Indian Journal of Science and Technology, 9(12), 1–13. https://doi.org/10.17485/ijst/2016/v9i12/86291
DOI: https://doi.org/10.17485/ijst/2016/v9i12/86291
Mohd, R., Butt, M. A., & Baba, M. Z. (2020). GWLM–NARX: Grey Wolf Levenberg–Marquardt-based neural network for rainfall prediction. Data Technologies and Applications, 54(1), 85–102. https://doi.org/10.1108/DTA-08-2019-0130
DOI: https://doi.org/10.1108/DTA-08-2019-0130
Mohd, R., Butt, M. A., & Baba, M. Z. (2019). SALM-NARX: Self adaptive LM-based NARX model for the prediction of rainfall. Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2018 (pp. 580–585). IEEE. https://doi.org/10.1109/ISMAC.2018.8653747
DOI: https://doi.org/10.1109/I-SMAC.2018.8653747
Multilayer Perceptron – an overview | ScienceDirect Topics. (n.d.). Retrieved December 26, 2021 from https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron
Multinomial Naive Bayes Explained: Function, Advantages & Disadvantages, Applications in 2021 | upGrad blog. (n.d.). Retrieved December 26, 2021 from https://www.upgrad.com/blog/multinomial-naive-bayesexplained/
Otoom, A. F., Abdallah, E. E., Kilani, Y., & Kefaye, A. (2015). Effective Diagnosis and Monitoring of Heart Disease. International Journal of Software Engineering and Its Applications, 9(1), 143–156.
Riyaz, L., Butt, M. A., Zaman, M., & Ayob, O. (2022). Heart Disease Prediction Using Machine Learning Techniques: A Quantitative Review. Advances in Intelligent Systems and Computing (pp. 81–94). Springer. https://doi.org/10.1007/978-981-16-3071-2_8
DOI: https://doi.org/10.1007/978-981-16-3071-2_8
Sakai, K., & Yamada, K. (2019). Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Japanese Journal of Radiology, 37, 34–72. https://doi.org/10.1007/s11604-018-0794-4
DOI: https://doi.org/10.1007/s11604-018-0794-4
Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F., Augimeri, A., Lopez, M., Arabia, G., Morelli, M., Gilardi, M. C., & Quattrone, A. (2014). Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. Journal of Neuroscience Methods, 222, 230–237. https://doi.org/10.1016/J.JNEUMETH.2013.11.016
DOI: https://doi.org/10.1016/j.jneumeth.2013.11.016
Shinde, R., Arjun, S., Patil, P., & Waghmare, P. J. (2015). An Intelligent Heart Disease Prediction System Using K-Means Clustering and Naïve Bayes Algorithm. International Journal of Computer Science and Information Technolog, 6(1), 637–639.
Takci, H. (2018). Improvement of heart attack prediction by the feature selection methods. Turkish Journal of Electrical Engineering and Computer Sciences, 26(1), 1–10. https://doi.org/10.3906/elk-1611-235
DOI: https://doi.org/10.3906/elk-1611-235
Thaiparnit, S., Kritsanasung, S., & Chumuang, N. (2019). A Classification for Patients with Heart Disease Based on Hoeffding Tree. JCSSE 2019 – 16th International Joint Conference on Computer Science and Software Engineering: Knowledge Evolution Towards Singularity of Man-Machine Intelligence (pp. 352–357). IEEE. https://doi.org/10.1109/JCSSE.2019.8864158
DOI: https://doi.org/10.1109/JCSSE.2019.8864158
Wei, S., Zhao, X., & Miao, C. (2018). A comprehensive exploration to the machine learning techniques for diabetes identification. IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, (pp. 291–295). IEEE.
https://doi.org/10.1109/WF-IOT.2018.8355130
DOI: https://doi.org/10.1109/WF-IoT.2018.8355130
Wu, C. C., Yeh, W. C., Hsu, W. D., Islam, M. M., Nguyen, P. A., Poly, T. N., Wang, Y. C., Yang, H. C., & Li, Y. C. (2019). Prediction of fatty liver disease using machine learning algorithms. Computer Methods and Programs in Biomedicine, 170, 23–29. https://doi.org/10.1016/J.CMPB.2018.12.032
DOI: https://doi.org/10.1016/j.cmpb.2018.12.032
Zaman, M., Kaul, S., & Ahmed, M. (2020). Analytical comparison between the information gain and gini index using historical geographical data. International Journal of Advanced Computer Science and Applications, 11(5), 429–440. https://doi.org/10.14569/IJACSA.2020.0110557
DOI: https://doi.org/10.14569/IJACSA.2020.0110557
Zaman, M., Quadri, S. M. K., & Butt, M. A. (2012). Information translation: A practitioners approach. Lecture Notes in Engineering and Computer Science, 1, 45–47.