KNEE JOINT OSTEOARTHRITIS DIAGNOSIS BASED ON SELECTED ACOUSTIC SIGNAL DISCRIMINANTS USING MACHINE LEARNING
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
This paper presents the results of a preliminary study on simplified diagnosis of osteoarthritis of the knee joint based on generated vibroacoustic processes. The analysis was based on acoustic signals recorded in a group of 50 people, half of whom were healthy, and the other half - people with previously confirmed degenerative changes. Selected discriminants of the signals were determined and statistical analysis was performed to allow selection of optimal discriminants used at a later stage as input to the classifier. The best results of classification using artificial neural networks (ANN) of RBF (Radial Basis Function) and MLP (Multilevel Perceptron) types are presented. For the problem involving the classification of cases into one of two groups HC (Healthy Control) and OA (Osteoarthritis) an accuracy of 0.9 was obtained, with a sensitivity of 0.885 and a specificity of 0.917. It is shown that vibroacoustic diagnostics has great potential in the non-invasive assessment of damage to joint structures of the knee.
Keywords:
References
Ahn, J. M., & El-Khoury, G. Y. (2006). Computed Tomography of Knee Injuries. Imaging Decisions MRI, 10(1), 14–23. https://doi.org/10.1111/j.1617-0830.2006.00063.x DOI: https://doi.org/10.1111/j.1617-0830.2006.00063.x
Arendt, E. A., Miller, L. E., & Block, J. E. (2014). Early knee osteoarthritis management should first address mechanical joint overload. Orthopedic Reviews, 6(1). https://doi.org/10.4081/or.2014.5188 DOI: https://doi.org/10.4081/or.2014.5188
Badurowicz, M. (2022). Detection of source code in internet texts using automatically generated machine learning models. Applied Computer Science. Applied Computer Science, 18(1), 89–98. https://doi.org/10.23743/acs-2022-07
Bauer, L., Stütz, L., & Kley, M. (2021). Black box efficiency modelling of an electric drive unit utilizing methods of machine learning. Applied Computer Science, 17(4), 5–19. https://doi.org/10.23743/acs-2021-25 DOI: https://doi.org/10.35784/acs-2021-25
Będziński, R. (1997). Biomechanika inżynierska: Zagadnienia wybrane. Oficyna Wydawnicza Politechniki Wrocławskiej.
Befrui, N., Elsner, J., Flesser, A., Huvanandana, J., Jarrousse, O., Le, T. N., Müller, M., Schulze, W. H. W., Taing, S., & Weidert, S. (2018). Vibroarthrography for early detection of knee osteoarthritis using normalized frequency features. Medical & Biological Engineering & Computing, 56(8), 1499–1514. https://doi.org/10.1007/s11517-018-1785-4 DOI: https://doi.org/10.1007/s11517-018-1785-4
Blodgett, W. E. (1902). Auscultation of the Knee Joint. The Boston Medical and Surgical Journal, 146(3), 63–66. https://doi.org/10.1056/NEJM190201161460304 DOI: https://doi.org/10.1056/NEJM190201161460304
Brittberg, M., & Winalski, C. S. (2003). Evaluation of cartilage injuries and repair. The Journal of Bone and Joint Surgery. American Volume, 85-A Suppl 2, 58–69. DOI: https://doi.org/10.2106/00004623-200300002-00008
Cameron, M. L., Briggs, K. K., & Steadman, J. R. (2003). Reproducibility and Reliability of the Outerbridge Classification for Grading Chondral Lesions of the Knee Arthroscopically. The American Journal of Sports Medicine, 31(1), 83–86. https://doi.org/10.1177/03635465030310012601 DOI: https://doi.org/10.1177/03635465030310012601
Cempel, C. (2005). Diagnostyka wibroakustyczna maszyn-historia, stan obecny, perspektywy rozwoju. Problemy Eksploatacji, 3, 7–25.
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 6. https://doi.org/10.1186/s12864-019-6413-7 DOI: https://doi.org/10.1186/s12864-019-6413-7
Cross, M., Smith, E., Hoy, D., Nolte, S., Ackerman, I., Fransen, M., Bridgett, L., Williams, S., Guillemin, F., Hill, C. L., Laslett, L. L., Jones, G., Cicuttini, F., Osborne, R., Vos, T., Buchbinder, R., Woolf, A., & March, L. (2014). The global burden of hip and knee osteoarthritis: Estimates from the Global Burden of Disease 2010 study. Annals of the Rheumatic Diseases, 73(7), 1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763 DOI: https://doi.org/10.1136/annrheumdis-2013-204763
Dudek-Dyduch, E., Tadeusiewicz, R., & Horzyk, A. (2009). Neural network adaptation process effectiveness dependent of constant training data availability. Neurocomputing, 72(13-15), 3138–3149. https://doi.org/10.1016/j.neucom.2009.03.017 DOI: https://doi.org/10.1016/j.neucom.2009.03.017
Felson, D. T. (2004). Obesity and vocational and avocational overload of the joint as risk factors for osteoarthritis. The Journal of Rheumatology Supplement, 70, 2–5.
Figlus, T., Kozioł, M., & Kuczyński, Ł. (2019). The Effect of Selected Operational Factors on the Vibroactivity of Upper Gearbox Housings Made of Composite Materials. Sensors, 19(19), 4240. https://doi.org/10.3390/s19194240 DOI: https://doi.org/10.3390/s19194240
Hayashi, D., Roemer, F. W., & Guermazi, A. (2019). Imaging of Osteoarthritis by Conventional Radiography, MR Imaging, PET–Computed Tomography, and PET-MR Imaging. PET Clinics, 14(1), 17–29. https://doi.org/10.1016/j.cpet.2018.08.004 DOI: https://doi.org/10.1016/j.cpet.2018.08.004
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. DOI: https://doi.org/10.1098/rspa.1998.0193
Hunter, D. J., & Bierma-Zeinstra, S. (2019). Osteoarthritis. The Lancet, 393(10182), 1745–1759. https://doi.org/10.1016/S0140-6736(19)30417-9 DOI: https://doi.org/10.1016/S0140-6736(19)30417-9
Jedliński, Ł., Caban, J., Krzywonos, L., Wierzbicki, S., & Brumerčík, F. (2015). Application of vibration signal in the diagnosis of IC engine valve clearance. Journal of Vibroengineering, 17(1), 175–187.
Jedliński, Ł., & Jonak, J. (2015). Early fault detection in gearboxes based on support vector machines and multilayer perceptron with a continuous wavelet transform. Applied Soft Computing, 30, 636–641. https://doi.org/10.1016/j.asoc.2015.02.015 DOI: https://doi.org/10.1016/j.asoc.2015.02.015
Jedliński, Ł., & Jonak, J. (2020). Kontrola montazu zebatych przekladni stozkowych metoda bezdemontazowa. Wydawnictwo Politechniki Lubelskiej.
Johnson, V. L., & Hunter, D. J. (2014). The epidemiology of osteoarthritis. Best Practice & Research Clinical Rheumatology, 28(1), 5–15. https://doi.org/10.1016/j.berh.2014.01.004 DOI: https://doi.org/10.1016/j.berh.2014.01.004
Jonak, J., Karpinski, R., Machrowska, A., Krakowski, P., & Maciejewski, M. (2019). A preliminary study on the use of EEMD-RQA algorithms in the detection of degenerative changes in knee joints. IOP Conference Series: Materials Science and Engineering, 710, 012037. https://doi.org/10.1088/1757-899X/710/1/012037 DOI: https://doi.org/10.1088/1757-899X/710/1/012037
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021a). Analysis of differences in vibroacoustic signals between healthy and osteoarthritic knees using EMD algorithm and statistical analysis. Journal of Physics: Conference Series, 2130(1), 012010. https://doi.org/10.1088/1742-6596/2130/1/012010 DOI: https://doi.org/10.1088/1742-6596/2130/1/012010
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2021b). Estimation of differences in selected indices of vibroacoustic signals between healthy and osteoarthritic patellofemoral joints as a potential non-invasive diagnostic tool. Journal of Physics: Conference Series, 2130(1), 012009. https://doi.org/10.1088/1742-6596/2130/1/012009 DOI: https://doi.org/10.1088/1742-6596/2130/1/012009
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022a). Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN-Part II: Patellofemoral Joint. Sensors, 22(10). https://doi.org/10.3390/s22103765 DOI: https://doi.org/10.3390/s22103765
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., Maciejewski, M., & Nogalski, A. (2022b). Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN-Part I: Femoral-Tibial Joint. Sensors, 22(6), 2176. https://doi.org/10.3390/s22062176 DOI: https://doi.org/10.3390/s22062176
Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03 DOI: https://doi.org/10.35784/acs-2019-03
Karpiński, R., Szabelski, J., & Maksymiuk, J. (2019a). Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement. Materials, 12(23), 3963. https://doi.org/10.3390/ma12233963 DOI: https://doi.org/10.3390/ma12233963
Karpiński, R., Szabelski, J., & Maksymiuk, J. (2019b). Seasoning Polymethyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio. Materials, 12(19), 3073. https://doi.org/10.3390/ma12193073 DOI: https://doi.org/10.3390/ma12193073
Kernohan, W. G., Beverland, D. E., McCoy, G. F., Hamilton, A., Watson, P., & Mollan, R. A. B. (1990). Vibration arthrometry. Acta Orthopaedica Scandinavica, 61(1), 70–79. DOI: https://doi.org/10.3109/17453679008993071
Kosicka, E., Krzyzak, A., Dorobek, M., & Borowiec, M. (2022). Prediction of Selected Mechanical Properties of Polymer Composites with Alumina Modifiers. Materials, 15(3), 882. https://doi.org/10.3390/ma15030882 DOI: https://doi.org/10.3390/ma15030882
Krakowski, P., Gerkowicz, A., Pietrzak, A., Krasowska, D., Jurkiewicz, A., Gorzelak, M., & Schwartz, R. A. (2019). Psoriatic arthritis – new perspectives. Archives of Medical Science, 15(3), 580–589. https://doi.org/10.5114/aoms.2018.77725 DOI: https://doi.org/10.5114/aoms.2018.77725
Krakowski, P., Karpiński, R., Jojczuk, M., Nogalska, A., & Jonak, J. (2021). Knee MRI Underestimates the Grade of Cartilage Lesions. Applied Sciences, 11(4), 1552. https://doi.org/10.3390/app11041552 DOI: https://doi.org/10.3390/app11041552
Krakowski, P., Karpiński, R., Jonak, J., & Maciejewski, R. (2021). Evaluation of diagnostic accuracy of physical examination and MRI for ligament and meniscus injuries. Journal of Physics: Conference Series, 1736, 012027. https://doi.org/10.1088/1742-6596/1736/1/012027 DOI: https://doi.org/10.1088/1742-6596/1736/1/012027
Krakowski, P., Karpiński, R., Maciejewski, R., & Jonak, J. (2021). Evaluation of the diagnostic accuracy of MRI in detection of knee cartilage lesions using Receiver Operating Characteristic curves. Journal of Physics: Conference Series, 1736, 012028. https://doi.org/10.1088/1742-6596/1736/1/012028 DOI: https://doi.org/10.1088/1742-6596/1736/1/012028
Krakowski, P., Karpiński, R., Maciejewski, R., Jonak, J., & Jurkiewicz, A. (2020). Short-Term Effects of Arthroscopic Microfracturation of Knee Chondral Defects in Osteoarthritis. Applied Sciences, 10(23), 8312. https://doi.org/10.3390/app10238312 DOI: https://doi.org/10.3390/app10238312
Krakowski, P., Nogalski, A., Jurkiewicz, A., Karpiński, R., Maciejewski, R., & Jonak, J. (2019). Comparison of Diagnostic Accuracy of Physical Examination and MRI in the Most Common Knee Injuries. Applied Sciences, 9(19), 4102. https://doi.org/10.3390/app9194102 DOI: https://doi.org/10.3390/app9194102
Krishnan, S., Rangayyan, R. M., Bell, G. D., & Frank, C. B. (2000). Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. IEEE Transactions on Biomedical Engineering, 47(6), 773–783. https://doi.org/10.1109/10.844228 DOI: https://doi.org/10.1109/10.844228
Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., … Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1859–1922. https://doi.org/10.1016/S0140-6736(18)32335-3 DOI: https://doi.org/10.1016/S0140-6736(18)32335-3
Machrowska, A., & Jonak, J. (2018). xEMD procedures as a data—Assisted filtering method. AIP Conference Proceedings, 1922, 120007. https://doi.org/10.1063/1.5019122 DOI: https://doi.org/10.1063/1.5019122
Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24 DOI: https://doi.org/10.35784/acs-2020-24
Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020). Use of Deep Learning Networks and Statistical Modeling to Predict Changes in Mechanical Parameters of Contaminated Bone Cements. Materials, 13(23), 5419. https://doi.org/10.3390/ma13235419 DOI: https://doi.org/10.3390/ma13235419
Madej, H., Czech, P., & Konieczny, Ł. (2003). Wykorzystanie dyskryminant bezwymiarowych w diagnostyce przekładni zębatych. Diagnostyka, 28, 17–22.
Mathiessen, A., Cimmino, M. A., Hammer, H. B., Haugen, I. K., Iagnocco, A., & Conaghan, P. G. (2016). Imaging of osteoarthritis (OA): What is new? Best Practice & Research Clinical Rheumatology, 30(4), 653–669. https://doi.org/10.1016/j.berh.2016.09.007 DOI: https://doi.org/10.1016/j.berh.2016.09.007
Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) – Protein Structure, 405(2), 442–451. https://doi.org/10.1016/0005-2795(75)90109-9 DOI: https://doi.org/10.1016/0005-2795(75)90109-9
McDonough, C. M., & Jette, A. M. (2010). The Contribution of Osteoarthritis to Functional Limitations and Disability. Clinics in Geriatric Medicine, 26(3), 387–399. https://doi.org/10.1016/j.cger.2010.04.001 DOI: https://doi.org/10.1016/j.cger.2010.04.001
Möller, I., Bong, D., Naredo, E., Filippucci, E., Carrasco, I., Moragues, C., & Iagnocco, A. (2008). Ultrasound in the study and monitoring of osteoarthritis. Osteoarthritis and Cartilage, 16, S4–S7. https://doi.org/10.1016/j.joca.2008.06.005 DOI: https://doi.org/10.1016/j.joca.2008.06.005
Powers, D. M. W. (2020). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. ArXiv:2010.16061 [Cs, Stat]. http://arxiv.org/abs/2010.16061
Prior, J., Mascaro, B., Shark, L.-K., Stockdale, J., Selfe, J., Bury, R., Cole, P., & Goodacre, J. A. (2010). Analysis of high frequency acoustic emission signals as a new approach for assessing knee osteoarthritis. Annals of the Rheumatic Diseases, 69(5), 929–930. https://doi.org/10.1136/ard.2009.112599 DOI: https://doi.org/10.1136/ard.2009.112599
Rabiej, M. (2018). Analizy statystyczne z programami Statistica i Excel. Wydawnictwo Helion.
Rangayyan, R. M., & Wu, Y. F. (2008). Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Medical & Biological Engineering & Computing, 46(3), 223–232. https://doi.org/10.1007/s11517-007-0278-7 DOI: https://doi.org/10.1007/s11517-007-0278-7
Reyes, C., Garcia-Gil, M., Elorza, J. M., Mendez-Boo, L., Hermosilla, E., Javaid, M. K., Cooper, C., Diez-Perez, A., Arden, N. K., Bolibar, B., Ramos, R., & Prieto-Alhambra, D. (2015). Socio-economic status and the risk of developing hand, hip or knee osteoarthritis: A region-wide ecological study. Osteoarthritis and Cartilage, 23(8), 1323–1329. https://doi.org/10.1016/j.joca.2015.03.020 DOI: https://doi.org/10.1016/j.joca.2015.03.020
Richette, P., & Latourte, A. (2019). Osteoarthritis: Value of imaging and biomarkers. La Revue Du Praticien, 69(5), 507–509.
Rogala, M. (2020). Neural Networks in Crashworthiness Analysis of Thin-Walled Profile with Foam Filling. Advances in Science and Technology Research Journal, 14(3), 93–99. https://doi.org/10.12913/22998624/120989 DOI: https://doi.org/10.12913/22998624/120989
Stanik, Z. (2013). Diagnozowanie lozysk tocznych pojazdów samochodowych metodami wibroakustycznymi. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – Państwowego Instytutu Badawczego.
Szabelski, J. (2018). Effect of incorrect mix ratio on strength of two component adhesive Butt-Joints tested at elevated temperature. MATEC Web of Conferences, 244, 01019. https://doi.org/10.1051/matecconf/201824401019 DOI: https://doi.org/10.1051/matecconf/201824401019
Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an Artificial Neural Network in the Modelling of Heat Curing Effects on the Strength of Adhesive Joints at Elevated Temperature with Imprecise Adhesive Mix Ratios. Materials, 15(3), 721. https://doi.org/10.3390/ma15030721 DOI: https://doi.org/10.3390/ma15030721
Tadeusiewicz, R. (1993). Sieci neuronowe (Vol. 110). Akademicka Oficyna Wydawnicza.
Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397–1402. https://doi.org/10.1016/j.joca.2007.05.005 DOI: https://doi.org/10.1016/j.joca.2007.05.005
Walters, C. F. (1929). The value of joint auscultation. The Lancet, 213(5514), 920–921. DOI: https://doi.org/10.1016/S0140-6736(00)79189-6
Wu, Y. (2015). Knee joint vibroarthrographic signal processing and analysis. Springer. DOI: https://doi.org/10.1007/978-3-662-44284-5
Article Details
Abstract views: 695
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.