COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION
Article Sidebar
Open full text
Issue Vol. 18 No. 3 (2022)
-
TOWARDS DIGITAL TWIN-DRIVEN PERFORMANCE EVALUATION METHODOLOGY OF FMS
Grzegorz BOCEWICZ, Robert WÓJCIK, Paweł SITEK, Zbigniew BANASZAK5-18
-
R PEAK DETERMINATION USING A WDFR ALGORITHM AND ADAPTIVE THRESHOLD
Thanh-Nghia NGUYEN, Thanh-Hai NGUYEN, Ba-Viet NGO19-30
-
SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW
Konrad PIETRYKOWSKI, Paweł KARPIŃSKI31-41
-
PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE
Andrij MILENIN42-53
-
APPLICATION OF SIMULATION RESEARCH TO ANALYSE THE PRODUCTION PROCESS IN TERMS OF SUSTAINABLE DEVELOPMENT
Agnieszka ZACHCIAŁ, Andrzej JARDZIOCH54-62
-
ANALYSIS OF THE USABILITY AND ACCESSIBILITY OF WEBSITES IN VIEW OF THEIR UNIVERSAL DESIGN PRINCIPLES
Błażej BADZIO, Agnieszka BODZIAK, Bartłomiej BRODAWKA, Karol BUCHAJCZUK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK63-85
-
COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION
Grzegorz SUCHANEK, Roman FILIPEK86-104
-
A SIX-PORT MEASUREMENT DEVICE FOR HIGH POWER MICROWAVE VECTOR NETWORK ANALYSIS
Benjamin KOMMEY, Ernest Ofosu ADDO, Elvis TAMAKLOE, Eric Tutu TCHAO, Henry NUNOO-MENSAH105-129
Archives
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The use of flying robots for various environmental protection issues is a very important and current research topic. Designing a dedicated multi-rotor flying robot is necessary for the efficient and automated localization of sources of air pollution, especially solid particles. In particular, one of the most important requirements that must be met by such a robot is its appropriate impact on the measurement process, i.e., increasing the sensitivity of sensors or reducing the interference. This is particularly difficult because its rotating rotors introduce significant disturbances to the surrounding fluid. In these studies, the design process is supported by the creation of a mathematical flow model and a series of analyzes to optimize the PM measurement system. The model is built using the finite-volume method in ANSYS Fluent software and steady-state RANS averaging. First, a flow field model with one propeller was modeled and its parameters identified by comparison with the results from the dedicated original dynamometer stand -- characteristics of the propeller performance. On the basis of the simulations and measurement of one rotor, subsequent systems of the highest practical importance are built. The effect of that design process was the preparation and testing of a functional robot prototype. The field parameter distributions resulting from the analyzes, in particular the turbulence intensity, allow one to propose a criterion on the basis of which both the best rotor configuration and localization of sensors are selected.
Keywords:
References
Alvarado, M., Gonzalez, F., Erskine, P., Cliff, D., & Heuff, D. (2017). A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle. Sensors, 17(2), 343. https://doi.org/10.3390/s17020343 DOI: https://doi.org/10.3390/s17020343
Ansys Fluent Theory Guide. Release 2020 R1, ANSYS Inc.
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge Univ. Press.
Burgués, J., Hernández, V., Lilienthal, A., & Marco, S. (2019). Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping. Sensors, 19(3), 478. https://doi.org/10.3390/s19030478 DOI: https://doi.org/10.3390/s19030478
Chang, J. H., Chen, Y. Y., & Huang, Y. M. (2018). Design and implementation of an ambient data collection mechanism based on a quadcopter. Proceedings – 2018 1st International Cognitive Cities Conference, IC3 2018 (pp. 32–36). IEEE. https://doi.org/10.1109/IC3.2018.00017 DOI: https://doi.org/10.1109/IC3.2018.00017
Chen, J., Scircle, A., Black, O., Cizdziel, J., Watson, N., Wevill, D., & Zhou, Y. (2018). On the use of multicopters for sampling and analysis of volatile organic compounds in the air by adsorption/thermal desorption GC-MS. Air Qual Atmos Health, 11, 835–842. https://doi.org/10.1007/s11869-018-0588-y DOI: https://doi.org/10.1007/s11869-018-0588-y
Cheng, W. H., Hsieh, T. S., Chu, C. M., Chiang, C. C., & Yuan, C. S. (2019). Application of a Telescoping Microextraction Needle Trap Sampling Device on a Drone to Extract Airborne Organic Vapors. Aerosol Air Qual. Res., 19, 1593–1601. https://doi.org/10.4209/aaqr.2019.04.0183 DOI: https://doi.org/10.4209/aaqr.2019.04.0183
Chiang, Y. L., Wang, J. C., Sun, C. H., Wen, T. H., Juang, J. Y., & Jiang, J. A. (2020). Mobile Measurement of Particulate Matter Concentrations on Urban Streets: System Development and Field Verification. IEEE Access, 8, 197617–197629. http://doi.org/10.1109/ACCESS.2020.3034489 DOI: https://doi.org/10.1109/ACCESS.2020.3034489
Chunithipaisan, S., Panyametheekul, S., Pumrin, S., Tanaksaranond, G., & Ngamsritrakul, T. (2018). Particulate Matter Monitoring Using Inexpensive Sensors and Internet GIS: A Case Study in Nan, Thailand. Engineering Journal, 22, 25–37. http://doi.org/10.4186/ej.2018.22.2.25 DOI: https://doi.org/10.4186/ej.2018.22.2.25
Ciesielka, W., & Suchanek, G. (2019). Modelling and simulation tests of a quadrocopter flying robot. New Trends in Production Engineering, 2(1), 486–495. http://doi.org/10.2478/ntpe-2019-0052 DOI: https://doi.org/10.2478/ntpe-2019-0052
Dieu Hien, V. T., Lin, C., Thanh, V. C., Kim Oanh, N. T., Thanh, B. X., Weng, C. E., Yuan, C. S., & Rene, E. R. (2019). An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs). Journal of Environmental Management, 247, 401–412. http://doi.org/10.1016/j.jenvman.2019.06.090 DOI: https://doi.org/10.1016/j.jenvman.2019.06.090
Faraz, A., Pushpendra, K., Yasar, K., & Pravin, P. P. (2020). Flow and Structural Analysis of a Quadcopter UAV. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(8), 880–888. http://doi.org/10.34218/IJARET.11.8.2020.086
Glauert, H. (1935). Airplane Propellers. In: Aerodynamic Theory. Springer Heidelberg. https://doi.org/10.1007/978-3-642-91487-4_3 DOI: https://doi.org/10.1007/978-3-642-91487-4_3
Gu, Q. R., Michanowicz, D., & Jia, C. (2018). Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling. Sensors, 18(12), 4363. https://doi.org/10.3390/s18124363 DOI: https://doi.org/10.3390/s18124363
Hutchinson, M., Liu, C., Chen, W. H. (2019). Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J Field Robotics, 36, 797–817. https://doi.org/10.1002/rob.21844 DOI: https://doi.org/10.1002/rob.21844
Landolsi, T., Sagahyroon, A., Mirza, M., Aref, O., Maki, F., & Maki, S. (2018). Pollution monitoring system using position-aware drones with 802.11 Ad-Hoc networks. 2018 IEEE Conference on Wireless Sensors, ICWiSe 2018 (pp. 40–43). IEEE. https://doi.org/10.1109/ICWISE.2018.8633285 DOI: https://doi.org/10.1109/ICWISE.2018.8633285
Luo, B., Meng, Q., Wang, J., & Ma, S. (2016). A numerical model to simulate the aerodynamic olfactory effect of the gas-sensitive UAV. 2016 12th World Congress on Intelligent Control and Automation (WCICA) (pp. 3295–3300). IEEE. http://doi.org/10.1109/WCICA.2016.7578639 DOI: https://doi.org/10.1109/WCICA.2016.7578639
Mayuga, G. P., Favila, C., Oppus, C., Macatulad, E., & Lim, L. H. (2018). Airborne Particulate Matter Monitoring Using UAVs for Smart Cities and Urban Areas. TENCON 2018 - 2018 IEEE Region 10 Conference (pp. 1398–1402). IEEE. http://doi.org/10.1109/TENCON.2018.8650293 DOI: https://doi.org/10.1109/TENCON.2018.8650293
Menter, F. R. (1994). Two-Equation, Eddy-Viscosity, Turbulence Models for Engineering Applications. AIAA Journal, 32, 1598–1605. https://doi.org/10.2514/3.12149 DOI: https://doi.org/10.2514/3.12149
Nagy, A., & Jahn, I. (2019). Advanced Data Acquisition System for Wind Energy Applications. Periodica Polytechnica Transportation Engineering, 47(2), 124–130. https://doi.org/10.3311/PPtr.11515 DOI: https://doi.org/10.3311/PPtr.11515
Ni, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., & Tai, X. (2017). Development of an Unmanned Aerial VehicleBorne Crop-Growth Monitoring System. Sensors, 17(3), 502. http://dx.doi.org/10.3390/s17030502 DOI: https://doi.org/10.3390/s17030502
Parra, P. H. G., Angulo, M. V. D., & Gaona, G. E. E. (2018). CFD Analysis of two and four blades for multirotor Unmanned Aerial Vehicle. 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (pp. 1–6). IEEE. http://doi.org/10.1109/CCRA.2018.8588130 DOI: https://doi.org/10.1109/CCRA.2018.8588130
Rodriguez, S. (2019). Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Springer Cham. https://doi.org/10.1007/978-3-030-28691-0 DOI: https://doi.org/10.1007/978-3-030-28691-0
Romik, D., & Czajka, I. (2022). Numerical Investigation of the Sensitivity of the Acoustic Power Level to Changes in Selected Design Parameters of an Axial Fan. Energies, 15(4), 1357. https://doi.org/10.3390/en15041357 DOI: https://doi.org/10.3390/en15041357
Smith, B.,John, G., Stark, B., Christensen, L. E., & Chen, Y. (2016). Applicability of unmanned aerial systems for leak detection. 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1220–1227). IEEE. http://doi.org/10.1109/ICUAS.2016.7502635 DOI: https://doi.org/10.1109/ICUAS.2016.7502635
Suchanek, G., Wołoszyn, J., & Gołaś, A. (2022). Evaluation of Selected Algorithms for Air Pollution Source Localisation Using Drones. Sustainability, 14(5), 3049. https://doi.org/10.3390/su14053049 DOI: https://doi.org/10.3390/su14053049
Tulwin, T. (2019). Low Reynolds Number Rotor Blade Aerodynamic Analysis. MATEC Web of Conferences, 252, 04006. https://doi.org/10.1051/matecconf/201925204006 DOI: https://doi.org/10.1051/matecconf/201925204006
Villa, T., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors, 16(12), 2202. https://doi.org/10.3390/s16122202 DOI: https://doi.org/10.3390/s16122202
Wang, D., Wang, Z., Peng, Z. R., & Wang, D. (2020). Using unmanned aerial vehicle to investigate the vertical distribution of fine particulate matter. International Journal of Environmental Science and Technology, 17, 219–230. https://doi.org/10.1007/s13762-019-02449-6 DOI: https://doi.org/10.1007/s13762-019-02449-6
Wang, Q. (2019). Real-time Atmospheric Monitoring of Urban Air Pollution Using Unmanned Aerial Vehicles. WIT Transactions on Ecology and the Environment, 236, 79–88. http://doi.org/10.2495/AIR190081 DOI: https://doi.org/10.2495/AIR190081
Wilcox, D. C. (2006). Turbulence Modeling for CFD (Third Edition). D C W Industries.
Article Details
Abstract views: 540
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
