COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION
Grzegorz SUCHANEK
suchanek@agh.edu.plAGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow, (Poland)
Roman FILIPEK
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow (Poland)
Abstract
The use of flying robots for various environmental protection issues is a very important and current research topic. Designing a dedicated multi-rotor flying robot is necessary for the efficient and automated localization of sources of air pollution, especially solid particles. In particular, one of the most important requirements that must be met by such a robot is its appropriate impact on the measurement process, i.e., increasing the sensitivity of sensors or reducing the interference. This is particularly difficult because its rotating rotors introduce significant disturbances to the surrounding fluid. In these studies, the design process is supported by the creation of a mathematical flow model and a series of analyzes to optimize the PM measurement system. The model is built using the finite-volume method in ANSYS Fluent software and steady-state RANS averaging. First, a flow field model with one propeller was modeled and its parameters identified by comparison with the results from the dedicated original dynamometer stand -- characteristics of the propeller performance. On the basis of the simulations and measurement of one rotor, subsequent systems of the highest practical importance are built. The effect of that design process was the preparation and testing of a functional robot prototype. The field parameter distributions resulting from the analyzes, in particular the turbulence intensity, allow one to propose a criterion on the basis of which both the best rotor configuration and localization of sensors are selected.
Keywords:
Computational Fluid Dynamics, PM Pollution, Propeller Aerodynamics, Multi-rotor Robot DesignReferences
Alvarado, M., Gonzalez, F., Erskine, P., Cliff, D., & Heuff, D. (2017). A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle. Sensors, 17(2), 343. https://doi.org/10.3390/s17020343
DOI: https://doi.org/10.3390/s17020343
Google Scholar
Ansys Fluent Theory Guide. Release 2020 R1, ANSYS Inc.
Google Scholar
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge Univ. Press.
Google Scholar
Burgués, J., Hernández, V., Lilienthal, A., & Marco, S. (2019). Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping. Sensors, 19(3), 478. https://doi.org/10.3390/s19030478
DOI: https://doi.org/10.3390/s19030478
Google Scholar
Chang, J. H., Chen, Y. Y., & Huang, Y. M. (2018). Design and implementation of an ambient data collection mechanism based on a quadcopter. Proceedings – 2018 1st International Cognitive Cities Conference, IC3 2018 (pp. 32–36). IEEE. https://doi.org/10.1109/IC3.2018.00017
DOI: https://doi.org/10.1109/IC3.2018.00017
Google Scholar
Chen, J., Scircle, A., Black, O., Cizdziel, J., Watson, N., Wevill, D., & Zhou, Y. (2018). On the use of multicopters for sampling and analysis of volatile organic compounds in the air by adsorption/thermal desorption GC-MS. Air Qual Atmos Health, 11, 835–842. https://doi.org/10.1007/s11869-018-0588-y
DOI: https://doi.org/10.1007/s11869-018-0588-y
Google Scholar
Cheng, W. H., Hsieh, T. S., Chu, C. M., Chiang, C. C., & Yuan, C. S. (2019). Application of a Telescoping Microextraction Needle Trap Sampling Device on a Drone to Extract Airborne Organic Vapors. Aerosol Air Qual. Res., 19, 1593–1601. https://doi.org/10.4209/aaqr.2019.04.0183
DOI: https://doi.org/10.4209/aaqr.2019.04.0183
Google Scholar
Chiang, Y. L., Wang, J. C., Sun, C. H., Wen, T. H., Juang, J. Y., & Jiang, J. A. (2020). Mobile Measurement of Particulate Matter Concentrations on Urban Streets: System Development and Field Verification. IEEE Access, 8, 197617–197629. http://doi.org/10.1109/ACCESS.2020.3034489
DOI: https://doi.org/10.1109/ACCESS.2020.3034489
Google Scholar
Chunithipaisan, S., Panyametheekul, S., Pumrin, S., Tanaksaranond, G., & Ngamsritrakul, T. (2018). Particulate Matter Monitoring Using Inexpensive Sensors and Internet GIS: A Case Study in Nan, Thailand. Engineering Journal, 22, 25–37. http://doi.org/10.4186/ej.2018.22.2.25
DOI: https://doi.org/10.4186/ej.2018.22.2.25
Google Scholar
Ciesielka, W., & Suchanek, G. (2019). Modelling and simulation tests of a quadrocopter flying robot. New Trends in Production Engineering, 2(1), 486–495. http://doi.org/10.2478/ntpe-2019-0052
DOI: https://doi.org/10.2478/ntpe-2019-0052
Google Scholar
Dieu Hien, V. T., Lin, C., Thanh, V. C., Kim Oanh, N. T., Thanh, B. X., Weng, C. E., Yuan, C. S., & Rene, E. R. (2019). An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs). Journal of Environmental Management, 247, 401–412. http://doi.org/10.1016/j.jenvman.2019.06.090
DOI: https://doi.org/10.1016/j.jenvman.2019.06.090
Google Scholar
Faraz, A., Pushpendra, K., Yasar, K., & Pravin, P. P. (2020). Flow and Structural Analysis of a Quadcopter UAV. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(8), 880–888. http://doi.org/10.34218/IJARET.11.8.2020.086
Google Scholar
Glauert, H. (1935). Airplane Propellers. In: Aerodynamic Theory. Springer Heidelberg. https://doi.org/10.1007/978-3-642-91487-4_3
DOI: https://doi.org/10.1007/978-3-642-91487-4_3
Google Scholar
Gu, Q. R., Michanowicz, D., & Jia, C. (2018). Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling. Sensors, 18(12), 4363. https://doi.org/10.3390/s18124363
DOI: https://doi.org/10.3390/s18124363
Google Scholar
Hutchinson, M., Liu, C., Chen, W. H. (2019). Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J Field Robotics, 36, 797–817. https://doi.org/10.1002/rob.21844
DOI: https://doi.org/10.1002/rob.21844
Google Scholar
Landolsi, T., Sagahyroon, A., Mirza, M., Aref, O., Maki, F., & Maki, S. (2018). Pollution monitoring system using position-aware drones with 802.11 Ad-Hoc networks. 2018 IEEE Conference on Wireless Sensors, ICWiSe 2018 (pp. 40–43). IEEE. https://doi.org/10.1109/ICWISE.2018.8633285
DOI: https://doi.org/10.1109/ICWISE.2018.8633285
Google Scholar
Luo, B., Meng, Q., Wang, J., & Ma, S. (2016). A numerical model to simulate the aerodynamic olfactory effect of the gas-sensitive UAV. 2016 12th World Congress on Intelligent Control and Automation (WCICA) (pp. 3295–3300). IEEE. http://doi.org/10.1109/WCICA.2016.7578639
DOI: https://doi.org/10.1109/WCICA.2016.7578639
Google Scholar
Mayuga, G. P., Favila, C., Oppus, C., Macatulad, E., & Lim, L. H. (2018). Airborne Particulate Matter Monitoring Using UAVs for Smart Cities and Urban Areas. TENCON 2018 - 2018 IEEE Region 10 Conference (pp. 1398–1402). IEEE. http://doi.org/10.1109/TENCON.2018.8650293
DOI: https://doi.org/10.1109/TENCON.2018.8650293
Google Scholar
Menter, F. R. (1994). Two-Equation, Eddy-Viscosity, Turbulence Models for Engineering Applications. AIAA Journal, 32, 1598–1605. https://doi.org/10.2514/3.12149
DOI: https://doi.org/10.2514/3.12149
Google Scholar
Nagy, A., & Jahn, I. (2019). Advanced Data Acquisition System for Wind Energy Applications. Periodica Polytechnica Transportation Engineering, 47(2), 124–130. https://doi.org/10.3311/PPtr.11515
DOI: https://doi.org/10.3311/PPtr.11515
Google Scholar
Ni, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., & Tai, X. (2017). Development of an Unmanned Aerial VehicleBorne Crop-Growth Monitoring System. Sensors, 17(3), 502. http://dx.doi.org/10.3390/s17030502
DOI: https://doi.org/10.3390/s17030502
Google Scholar
Parra, P. H. G., Angulo, M. V. D., & Gaona, G. E. E. (2018). CFD Analysis of two and four blades for multirotor Unmanned Aerial Vehicle. 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (pp. 1–6). IEEE. http://doi.org/10.1109/CCRA.2018.8588130
DOI: https://doi.org/10.1109/CCRA.2018.8588130
Google Scholar
Rodriguez, S. (2019). Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Springer Cham. https://doi.org/10.1007/978-3-030-28691-0
DOI: https://doi.org/10.1007/978-3-030-28691-0
Google Scholar
Romik, D., & Czajka, I. (2022). Numerical Investigation of the Sensitivity of the Acoustic Power Level to Changes in Selected Design Parameters of an Axial Fan. Energies, 15(4), 1357. https://doi.org/10.3390/en15041357
DOI: https://doi.org/10.3390/en15041357
Google Scholar
Smith, B.,John, G., Stark, B., Christensen, L. E., & Chen, Y. (2016). Applicability of unmanned aerial systems for leak detection. 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1220–1227). IEEE. http://doi.org/10.1109/ICUAS.2016.7502635
DOI: https://doi.org/10.1109/ICUAS.2016.7502635
Google Scholar
Suchanek, G., Wołoszyn, J., & Gołaś, A. (2022). Evaluation of Selected Algorithms for Air Pollution Source Localisation Using Drones. Sustainability, 14(5), 3049. https://doi.org/10.3390/su14053049
DOI: https://doi.org/10.3390/su14053049
Google Scholar
Tulwin, T. (2019). Low Reynolds Number Rotor Blade Aerodynamic Analysis. MATEC Web of Conferences, 252, 04006. https://doi.org/10.1051/matecconf/201925204006
DOI: https://doi.org/10.1051/matecconf/201925204006
Google Scholar
Villa, T., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors, 16(12), 2202. https://doi.org/10.3390/s16122202
DOI: https://doi.org/10.3390/s16122202
Google Scholar
Wang, D., Wang, Z., Peng, Z. R., & Wang, D. (2020). Using unmanned aerial vehicle to investigate the vertical distribution of fine particulate matter. International Journal of Environmental Science and Technology, 17, 219–230. https://doi.org/10.1007/s13762-019-02449-6
DOI: https://doi.org/10.1007/s13762-019-02449-6
Google Scholar
Wang, Q. (2019). Real-time Atmospheric Monitoring of Urban Air Pollution Using Unmanned Aerial Vehicles. WIT Transactions on Ecology and the Environment, 236, 79–88. http://doi.org/10.2495/AIR190081
DOI: https://doi.org/10.2495/AIR190081
Google Scholar
Wilcox, D. C. (2006). Turbulence Modeling for CFD (Third Edition). D C W Industries.
Google Scholar
Authors
Grzegorz SUCHANEKsuchanek@agh.edu.pl
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow, Poland
Authors
Roman FILIPEKAGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow Poland
Statistics
Abstract views: 256PDF downloads: 128
License
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Similar Articles
- Rafał KLIZA, Karol ŚCISŁOWSKI, Ksenia SIADKOWSKA, Jacek PADYJASEK, Mirosław WENDEKER, STRENGTH ANALYSIS OF A PROTOTYPE COMPOSITE HELICOPTER ROTOR BLADE SPAR , Applied Computer Science: Vol. 18 No. 1 (2022)
- Katarzyna KUREK, Maria Skublewska-Paszkowska, Mariusz DZIENKOWSKI, Paweł POWROZNIK, THE IMPACT OF APPLYING UNIVERSAL DESIGN PRINCIPLES ON THE USABILITY OF ONLINE ACCOMMODATION BOOKING WEBSITES , Applied Computer Science: Vol. 20 No. 1 (2024)
- Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ, EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Konrad PIETRYKOWSKI, Paweł KARPIŃSKI, SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW , Applied Computer Science: Vol. 18 No. 3 (2022)
- Błażej BADZIO, Agnieszka BODZIAK, Bartłomiej BRODAWKA, Karol BUCHAJCZUK, Maria SKUBLEWSKA-PASZKOWSKA, Mariusz DZIEŃKOWSKI, Paweł POWROŹNIK, ANALYSIS OF THE USABILITY AND ACCESSIBILITY OF WEBSITES IN VIEW OF THEIR UNIVERSAL DESIGN PRINCIPLES , Applied Computer Science: Vol. 18 No. 3 (2022)
- Siti ROHAJAWATI, Hutanti SETYODEWI, Ferryansyah Muji Agustian TRESNANTO, Debora MARIANTHI, Maruli Tua Baja SIHOTANG , KNOWLEDGE MANAGEMENT APPROACH IN COMPARATIVE STUDY OF AIR POLLUTION PREDICTION MODEL , Applied Computer Science: Vol. 20 No. 1 (2024)
- Thanh-Lam BUI, Ngoc-Tien TRAN, NAVIGATION STRATEGY FOR MOBILE ROBOT BASED ON COMPUTER VISION AND YOLOV5 NETWORK IN THE UNKNOWN ENVIRONMENT , Applied Computer Science: Vol. 19 No. 2 (2023)
- Tomasz SEDERYN, Małgorzata SKAWIŃSKA, COMPUTATIONAL ANALYSIS OF PEM FUEL CELL UNDER DIFFERENT OPERATING CONDITIONS , Applied Computer Science: Vol. 19 No. 4 (2023)
- Łukasz SEMKŁO, Łukasz GIERZ, NUMERICAL AND EXPERIMENTAL ANALYSIS OF A CENTRIFUGAL PUMP WITH DIFFERENT ROTOR GEOMETRIES , Applied Computer Science: Vol. 18 No. 4 (2022)
- Noor SABAH, Ekhlas HAMEED, Muayed S AL-HUSEINY, OPTIMAL SLIDING MODE CONTROLLER DESIGN BASED ON WHALE OPTIMIZATION ALGORITHM FOR LOWER LIMB REHABILITATION ROBOT , Applied Computer Science: Vol. 17 No. 3 (2021)
You may also start an advanced similarity search for this article.