COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION

Grzegorz SUCHANEK

suchanek@agh.edu.pl
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow, (Poland)

Roman FILIPEK


AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow (Poland)

Abstract

The use of flying robots for various environmental protection issues is a very important and current research topic. Designing a dedicated multi-rotor flying robot is necessary for the efficient and automated localization of sources of air pollution, especially solid particles. In particular, one of the most important requirements that must be met by such a robot is its appropriate impact on the measurement process, i.e., increasing the sensitivity of sensors or reducing the interference. This is particularly difficult because its rotating rotors introduce significant disturbances to the surrounding fluid. In these studies, the design process is supported by the creation of a mathematical flow model and a series of analyzes to optimize the PM measurement system. The model is built using the finite-volume method in ANSYS Fluent software and steady-state RANS averaging. First, a flow field model with one propeller was modeled and its parameters identified by comparison with the results from the dedicated original dynamometer stand -- characteristics of the propeller performance. On the basis of the simulations and measurement of one rotor, subsequent systems of the highest practical importance are built. The effect of that design process was the preparation and testing of a functional robot prototype. The field parameter distributions resulting from the analyzes, in particular the turbulence intensity, allow one to propose a criterion on the basis of which both the best rotor configuration and localization of sensors are selected.


Keywords:

Computational Fluid Dynamics, PM Pollution, Propeller Aerodynamics, Multi-rotor Robot Design

Alvarado, M., Gonzalez, F., Erskine, P., Cliff, D., & Heuff, D. (2017). A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle. Sensors, 17(2), 343. https://doi.org/10.3390/s17020343
DOI: https://doi.org/10.3390/s17020343   Google Scholar

Ansys Fluent Theory Guide. Release 2020 R1, ANSYS Inc.
  Google Scholar

Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge Univ. Press.
  Google Scholar

Burgués, J., Hernández, V., Lilienthal, A., & Marco, S. (2019). Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping. Sensors, 19(3), 478. https://doi.org/10.3390/s19030478
DOI: https://doi.org/10.3390/s19030478   Google Scholar

Chang, J. H., Chen, Y. Y., & Huang, Y. M. (2018). Design and implementation of an ambient data collection mechanism based on a quadcopter. Proceedings – 2018 1st International Cognitive Cities Conference, IC3 2018 (pp. 32–36). IEEE. https://doi.org/10.1109/IC3.2018.00017
DOI: https://doi.org/10.1109/IC3.2018.00017   Google Scholar

Chen, J., Scircle, A., Black, O., Cizdziel, J., Watson, N., Wevill, D., & Zhou, Y. (2018). On the use of multicopters for sampling and analysis of volatile organic compounds in the air by adsorption/thermal desorption GC-MS. Air Qual Atmos Health, 11, 835–842. https://doi.org/10.1007/s11869-018-0588-y
DOI: https://doi.org/10.1007/s11869-018-0588-y   Google Scholar

Cheng, W. H., Hsieh, T. S., Chu, C. M., Chiang, C. C., & Yuan, C. S. (2019). Application of a Telescoping Microextraction Needle Trap Sampling Device on a Drone to Extract Airborne Organic Vapors. Aerosol Air Qual. Res., 19, 1593–1601. https://doi.org/10.4209/aaqr.2019.04.0183
DOI: https://doi.org/10.4209/aaqr.2019.04.0183   Google Scholar

Chiang, Y. L., Wang, J. C., Sun, C. H., Wen, T. H., Juang, J. Y., & Jiang, J. A. (2020). Mobile Measurement of Particulate Matter Concentrations on Urban Streets: System Development and Field Verification. IEEE Access, 8, 197617–197629. http://doi.org/10.1109/ACCESS.2020.3034489
DOI: https://doi.org/10.1109/ACCESS.2020.3034489   Google Scholar

Chunithipaisan, S., Panyametheekul, S., Pumrin, S., Tanaksaranond, G., & Ngamsritrakul, T. (2018). Particulate Matter Monitoring Using Inexpensive Sensors and Internet GIS: A Case Study in Nan, Thailand. Engineering Journal, 22, 25–37. http://doi.org/10.4186/ej.2018.22.2.25
DOI: https://doi.org/10.4186/ej.2018.22.2.25   Google Scholar

Ciesielka, W., & Suchanek, G. (2019). Modelling and simulation tests of a quadrocopter flying robot. New Trends in Production Engineering, 2(1), 486–495. http://doi.org/10.2478/ntpe-2019-0052
DOI: https://doi.org/10.2478/ntpe-2019-0052   Google Scholar

Dieu Hien, V. T., Lin, C., Thanh, V. C., Kim Oanh, N. T., Thanh, B. X., Weng, C. E., Yuan, C. S., & Rene, E. R. (2019). An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs). Journal of Environmental Management, 247, 401–412. http://doi.org/10.1016/j.jenvman.2019.06.090
DOI: https://doi.org/10.1016/j.jenvman.2019.06.090   Google Scholar

Faraz, A., Pushpendra, K., Yasar, K., & Pravin, P. P. (2020). Flow and Structural Analysis of a Quadcopter UAV. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(8), 880–888. http://doi.org/10.34218/IJARET.11.8.2020.086
  Google Scholar

Glauert, H. (1935). Airplane Propellers. In: Aerodynamic Theory. Springer Heidelberg. https://doi.org/10.1007/978-3-642-91487-4_3
DOI: https://doi.org/10.1007/978-3-642-91487-4_3   Google Scholar

Gu, Q. R., Michanowicz, D., & Jia, C. (2018). Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling. Sensors, 18(12), 4363. https://doi.org/10.3390/s18124363
DOI: https://doi.org/10.3390/s18124363   Google Scholar

Hutchinson, M., Liu, C., Chen, W. H. (2019). Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J Field Robotics, 36, 797–817. https://doi.org/10.1002/rob.21844
DOI: https://doi.org/10.1002/rob.21844   Google Scholar

Landolsi, T., Sagahyroon, A., Mirza, M., Aref, O., Maki, F., & Maki, S. (2018). Pollution monitoring system using position-aware drones with 802.11 Ad-Hoc networks. 2018 IEEE Conference on Wireless Sensors, ICWiSe 2018 (pp. 40–43). IEEE. https://doi.org/10.1109/ICWISE.2018.8633285
DOI: https://doi.org/10.1109/ICWISE.2018.8633285   Google Scholar

Luo, B., Meng, Q., Wang, J., & Ma, S. (2016). A numerical model to simulate the aerodynamic olfactory effect of the gas-sensitive UAV. 2016 12th World Congress on Intelligent Control and Automation (WCICA) (pp. 3295–3300). IEEE. http://doi.org/10.1109/WCICA.2016.7578639
DOI: https://doi.org/10.1109/WCICA.2016.7578639   Google Scholar

Mayuga, G. P., Favila, C., Oppus, C., Macatulad, E., & Lim, L. H. (2018). Airborne Particulate Matter Monitoring Using UAVs for Smart Cities and Urban Areas. TENCON 2018 - 2018 IEEE Region 10 Conference (pp. 1398–1402). IEEE. http://doi.org/10.1109/TENCON.2018.8650293
DOI: https://doi.org/10.1109/TENCON.2018.8650293   Google Scholar

Menter, F. R. (1994). Two-Equation, Eddy-Viscosity, Turbulence Models for Engineering Applications. AIAA Journal, 32, 1598–1605. https://doi.org/10.2514/3.12149
DOI: https://doi.org/10.2514/3.12149   Google Scholar

Nagy, A., & Jahn, I. (2019). Advanced Data Acquisition System for Wind Energy Applications. Periodica Polytechnica Transportation Engineering, 47(2), 124–130. https://doi.org/10.3311/PPtr.11515
DOI: https://doi.org/10.3311/PPtr.11515   Google Scholar

Ni, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., & Tai, X. (2017). Development of an Unmanned Aerial VehicleBorne Crop-Growth Monitoring System. Sensors, 17(3), 502. http://dx.doi.org/10.3390/s17030502
DOI: https://doi.org/10.3390/s17030502   Google Scholar

Parra, P. H. G., Angulo, M. V. D., & Gaona, G. E. E. (2018). CFD Analysis of two and four blades for multirotor Unmanned Aerial Vehicle. 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (pp. 1–6). IEEE. http://doi.org/10.1109/CCRA.2018.8588130
DOI: https://doi.org/10.1109/CCRA.2018.8588130   Google Scholar

Rodriguez, S. (2019). Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Springer Cham. https://doi.org/10.1007/978-3-030-28691-0
DOI: https://doi.org/10.1007/978-3-030-28691-0   Google Scholar

Romik, D., & Czajka, I. (2022). Numerical Investigation of the Sensitivity of the Acoustic Power Level to Changes in Selected Design Parameters of an Axial Fan. Energies, 15(4), 1357. https://doi.org/10.3390/en15041357
DOI: https://doi.org/10.3390/en15041357   Google Scholar

Smith, B.,John, G., Stark, B., Christensen, L. E., & Chen, Y. (2016). Applicability of unmanned aerial systems for leak detection. 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1220–1227). IEEE. http://doi.org/10.1109/ICUAS.2016.7502635
DOI: https://doi.org/10.1109/ICUAS.2016.7502635   Google Scholar

Suchanek, G., Wołoszyn, J., & Gołaś, A. (2022). Evaluation of Selected Algorithms for Air Pollution Source Localisation Using Drones. Sustainability, 14(5), 3049. https://doi.org/10.3390/su14053049
DOI: https://doi.org/10.3390/su14053049   Google Scholar

Tulwin, T. (2019). Low Reynolds Number Rotor Blade Aerodynamic Analysis. MATEC Web of Conferences, 252, 04006. https://doi.org/10.1051/matecconf/201925204006
DOI: https://doi.org/10.1051/matecconf/201925204006   Google Scholar

Villa, T., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors, 16(12), 2202. https://doi.org/10.3390/s16122202
DOI: https://doi.org/10.3390/s16122202   Google Scholar

Wang, D., Wang, Z., Peng, Z. R., & Wang, D. (2020). Using unmanned aerial vehicle to investigate the vertical distribution of fine particulate matter. International Journal of Environmental Science and Technology, 17, 219–230. https://doi.org/10.1007/s13762-019-02449-6
DOI: https://doi.org/10.1007/s13762-019-02449-6   Google Scholar

Wang, Q. (2019). Real-time Atmospheric Monitoring of Urban Air Pollution Using Unmanned Aerial Vehicles. WIT Transactions on Ecology and the Environment, 236, 79–88. http://doi.org/10.2495/AIR190081
DOI: https://doi.org/10.2495/AIR190081   Google Scholar

Wilcox, D. C. (2006). Turbulence Modeling for CFD (Third Edition). D C W Industries.
  Google Scholar

Download


Published
2022-09-30

Cited by

SUCHANEK, G., & FILIPEK, R. (2022). COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION. Applied Computer Science, 18(3), 86–104. https://doi.org/10.35784/acs-2022-23

Authors

Grzegorz SUCHANEK 
suchanek@agh.edu.pl
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow, Poland

Authors

Roman FILIPEK 

AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow Poland

Statistics

Abstract views: 256
PDF downloads: 128


License

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.